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Gene Expression Profile
Prediction in Uveal Melanoma
Using Deep Learning
A Pilot Study for the Development of an
Alternative Survival Prediction Tool

In recent years, artificial intelligence, especially deep learning (DL), has
generated immense interest in themedical field. Deep learning has been
used to classify medical images in disciplines such as ophthalmology
and oncologic pathology. One commonality acrossmalignancies is that
cancer cell morphologic features potentially reflect the underlying ge-
netics and that careful analysis of cytopathologic characteristics often
provides helpful prognostication information. However, detailed mea-
surement and analysis of cell morphologic features are labor intensive
and clinically infeasible, and thus is limited largely to research. Ana-
lyses of pathologic images to extract useful information ultimately are a
pattern recognition exercise in which DL excels. We hypothesize that
DL methods, when applied appropriately in cytopathologic image
analysis, could predict patient outcomes that correlate with the tumors’
genetic or molecular profiles, or both. Our disease of interest is uveal
melanoma (UM), which is unique among malignancies for having a
validated prognostic gene expression profile (GEP) test that can be used
independently of other clinicopathologic parameters and can be tested
on fine-needle aspiration biopsy (FNAB) samples. Patients with UM
can be divided into 2 classes byGEP,with a survival probability of 95%
in class 1 patients and 31% in class 2 patients at 92 months.1,2 Our
ultimate goal is to develop a DL-based image analytic tool for sur-
vival prognostication in UM. Given that GEP is correlated highly with
survival in UM, we set out to conduct a pilot study to develop a DL
system that can distinguish patient survival using smeared cytologic
aspirates from FNAB samples and GEP as the reference standard.

Our retrospective study was conducted in accordance with the
tenets of the Declaration of Helsinki and was approved by the
institutional review board. No informed consent was obtained as this
was a retrospective study. The Johns Hopkins University
IRB reviewed this study and determined it to be exempt. In total,
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Figure 1. Sample class activation mapping analyses of correctly pre-
dicted cytopathologic image tiles. A, Patient 5, gene expression
profile (GEP) class 1. The highlighted cells demonstrate classic
spindle morphologic features, which are associated with better prog-
nosis. B, Patient 10, GEP class 1. The highlighted cells exhibit less
atypia than the rest of the cells. C, Patient 13, GEP class 2. The
highlighted cell exhibits epithelioid cytomorphologic features, which
are known to carry a worse prognosis. D, Patient 18, GEP class 2.
The highlighted region contains a cell with the highest nuclear-to-
cytoplasmic ratio and degree of atypia, features that are associated
with a worse prognosis.
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20 de-identified, FNAB cytologic slides stained with
hematoxylineeosin were selected randomly (1 slide per patient; 10
from GEP class 1 and 10 from GEP class 2) from one of the author’s
(Z.M.C.) cohort of UM patients.3 Whole-slide scanning was per-
formed. Using a magnification of �40, native-resolution crops
containing UM cells were saved in TIFF format and were split
further into 8 tiles of equal size. The tiles then were selected for
further processing only if at least 1 UM cell was present. Typically,
each slide generated hundreds of �40 snapshot images, and of the
20 slides, a total of 26 351 unique tiles were generated.

Transfer learning and the ResNet-1524 deep convolutional neural
network were adopted, and the last fully connected layer was modified
for our binary classification problem of distinguishing between
patients with good and poor prognosis per GEP classification. We
performed leave-1-out cross-validations. To test each of the 20
slides (and patients), we trained 10 models with a different training
and validation split, expecting our DL system’s performance to be
affected by the data split because of the small dataset size and patient-
level splitting. Specifically, for each of the leave-1-out cross-
validations, we performed 10 random samplings for the validation
subset selection. If slide 1 was used as the testing slide, then the other
19 slides were used for model development: 17 slides for training and
2 slides for validation (1 from class 1 and 1 from class 2). Slide 1 then
was tested 10 different times by 10 different models that were
generated by 10 random and different combinations of training and
validation slides. For example, model 1 would use slide 2 and slide 11
for validation. Model 2 would use slide 3 and slide 12 for validation,
and so forth. Eventually, 10 models were generated, and the mean
accuracy of these 10 models was obtained. If the lower 95 confidence
interval value exceeded 50%, then we concluded that the GEP of slide
1 (i.e., patient 1) was predicted correctly. This process was repeated
for all 20 slides (and patients), such that each slide (or patient) was
evaluated 10 times by 10 different models. To identify the image
features used by the deep convolutional neural network to predict
GEP, we created heatmaps through class activation mapping,5 a
technique that visually highlights areas of importance for
classification decisions within an image (the warmer the colord
e.g., reddthe higher the importance of that region).

In our pilot study, we were able to correlate the DL prediction
with GEP in 15 of 20 patients from our cohort (point estimate of
75% accuracy; 95% confidence interval, 51%e91%). Given that
GEP is correlated highly with survival, the data suggest that prog-
nostication information can be predicted from hematoxylineeosin
pathology slides alone in UM using DL. Sample class activation
mapping analyses (Fig 1) for the correctly predicted images showed
that our deep convolutional neural network generally focused on
biologically relevant features: UM cells with spindle-shaped
morphologic features or less atypia in GEP class 1 images and
UM cells with epithelioid morphologic features, more atypia, and
larger nuclei or nucleoli in GEP class 2 images. Interestingly, our
algorithm predicted “poor outcome” in a patient with a class 1 tumor
who died of unexpected early metastasis 28 months after the initial
diagnosis, and predicted a “not so unfavorable outcome” in 2 class 2
patients who survived for more than 20 months after metastasis was
detected, significantly longer than the median survival time of 3.9
months.6 If this trend can be reproduced prospectively and validated
externally with actual survival data as the reference standard, it
would suggest that a mature version of our algorithm may provide
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more fine-grained survival prognostication when paired with GEP
testing: predict unfavorable clinical surprises in class 1 patients and
extended survival in class 2 patients.

Our pilot study has numerous limitations. First, FNABs can be
technically challenging and susceptible to sampling errors,
although all biopsies were performed by the same experienced
ocular oncologist (Z.M.C.). Second, currently available saliency
analysis techniques, such as class activation mapping, are only
partially explainable. For example, it is unclear how our algorithm
decides which cells to focus on to make predictions. Third,
although our DL system was developed with more than 25 000
unique data points, it ultimately included data from only 20 UM
patients. The small patient sample size and data variation required
us to perform leave-1-out validations, instead of the more con-
ventional method of training and validating a single model. As the
next step, we plan to train an algorithm with a larger database and
actual survival data as the reference standard and to test it against
an external dataset, with the goal of developing an alternative
survival prediction tool in UM.
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