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Abstract

Algorithmic decision support is rapidly becoming
a staple of personalized medicine, especially for
high-stakes recommendations in which access to
certain information can drastically alter the course
of treatment, and thus, patient outcome; a promi-
nent example is radiomics for cancer subtyping.
Because in these scenarios the stakes are high,
it is desirable for decision systems to not only
provide recommendations but supply transparent
reasoning in support thereof. For learning-based
systems, this can be achieved through an inter-
pretable design of the inference pipeline. Herein
we describe an automated yet interpretable sys-
tem for uveal melanoma subtyping with digital
cytology images from fine needle aspiration biop-
sies. Our method embeds every automatically
segmented cell of a candidate cytology image as
a point in a 2D manifold defined by many repre-
sentative slides, which enables reasoning about
the cell-level composition of the tissue sample,
paving the way for interpretable subtyping of the
biopsy. Finally, a rule-based slide-level classifi-
cation algorithm is trained on the partitions of
the circularly distorted 2D manifold. This pro-
cess results in a simple rule set that is evaluated
automatically but highly transparent for human
verification. On our in house cytology dataset of
88 uveal melanoma patients, the proposed method
achieves an accuracy of 87.5% that compares fa-
vorably to all competing approaches, including
deep “black box” models. The method comes
with a user interface to facilitate interaction with
cell-level content, which may offer additional in-
sights for pathological assessment.
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1. Introduction
Uveal Melanoma (UM) is the most common primary intraoc-
ular malignancy in adults (Singh et al., 2011). As standard
care for UM, Fine Needle Aspiration Biopsy (FNAB) is
often performed to confirm the diagnosis and enable UM
prognostication. To this end, a molecular test, Gene Expres-
sion Profile (GEP), is performed and microscopic Cytology
of Fine Needle Aspirates images are created from the biopsy.
According to a recent study, there exist two subtypes in UM
that can be identified based on its GEP: The first subtype
exhibits low metastatic risk, while the second subtype has
been linked to high metastatic risk. There is a stark contrast
in long-term survival between the two classes: the 92-month
survival probability in class 1 patients is 95%, versus 31% in
class 2 patients (Onken et al., 2004). It is evident that access
to UM subtype information is critical for proper manage-
ment of patients by providing appropriate recommendation
for metastasis surveillance. However, even after 10 years
of development, GEP is still only available in the United
States. The technique is also expensive and has a long turn
around time. A more accessible test for UM subtyping is,
therefore, highly desirable.

There is increasing evidence that the underlying genetic
profile affects cancer growth on multiple scales. Ra-
diomics, for example, exploits this observation to develop
imaging-derived biomarkers that are informative for prog-
nosis (Grossmann et al., 2017). In the particular case
of UM prognostication, there is huge potential in using
imaging-derived biomarkers to determine GEP subtype and
metastatic risk directly from cytology slides. While it is
impossible even for highly trained pathologists to derive
this information from cytology images, learning-based algo-
rithms that discover associations between intensity patterns
in cytology images and GEP subtype are promising (Liu
et al., 2020; Chen et al., 2020). However, as “black box”
models that perform a super-human task, these algorithms
do not offer insights beyond the final recommendation to the
human decision makers, which has been linked to automa-
tion bias and over-trust or dis-trust in such systems (Nourani
et al., 2020; Gaube et al., 2021). A more transparent algo-
rithm design may enable humans to better calibrate their
trust in the recommendation, which would be an important
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Figure 1. An overview of the automatic interpretable algorithm for uveal melanoma subtyping from cytology images. The algorithm
consists of cell instance segmentation to extract cell appearance information that is used to cluster cells of similar appearance in a circular
space. Based on a coarse partitioning of the embedding space, which we refer to as pie chart, shown in (a), we find simple rule sets (b)
that enable uveal melanoma subtyping, which otherwise, requires gene analysis. A pie chart of a representative patient is shown in (c) -
the patient is at high metastatic risk (GEP class 2).

feat for high-stakes decision making.

In this paper, we develop an automatic system for inter-
pretable UM subtype classification from cytology images.
The method is based on the idea that biopsy samples of
the two UM subtypes should differ in overall cell composi-
tion. Thus, an algorithm that enables high level, rule-based
reasoning on the cell composition of the sample, would be
interpretable and could easily be verified by human users. To
create this algorithm, we have developed automated meth-
ods for cell instance segmentation in cytology images from
weak supervision, techniques to aggregate and represent
whole slide-level cell appearance information in an intuitive
embedding space, and rule-based classification algorithms
to infer UM subtype from this representation. Figure 1
provides a concise overview of the user-facing side of the
method. Because subtyping now amounts to evaluating sim-
ple instructions, the rule-based system is highly transparent
and offers insight into whether a specific sample “barely”
or “strongly” obeys the rules, which may enable calibration
of trust in the system. The present manuscript details the
technical developments that were necessary to devise this
system, and our future work will focus on human factors,
including trust and over-reliance issues, in this high-stakes,
high-knowledge imbalance scenario.

2. Related work
The high resolution and complexity of whole slide images
(WSIs) make cell-level annotations difficult or impossible
to obtain, which is why many of the annotated datasets are
limited to slide-level labels that correspond to the overall
diagnosis. However, standard automatic cancer subtyping

and analysis in WSIs is based on multiple small regions
extracted from slides, that then need to be aggregated to a
single prediction on the slide level. These methods include
majority voting, coarse-to-fine techniques (Liu et al., 2017;
Hou et al., 2016; Xu et al., 2017; Zhang et al., 2020), and
multiple instance learning approaches (Chikontwe et al.,
2020; Campanella et al., 2019). While most of the deep
learning approaches in WSIs analysis consider black box
models, recent works attempt to introduce features that en-
hance model understanding by mimicking the decision pro-
cess of pathologists. For instance, content-based histopatho-
logical image retrieval (Peng et al., 2019; Hegde et al., 2019)
contrasts a query image with a large database to determine
the search results with more similar histological features.
Making intelligent systems interpretable is another frontier
in developing trustworthy medical decision support appli-
cations (Rudin, 2019). In contrast to explainable models
that rely on post hoc analysis, interpretable models aim to
explain the reasoning behind a prediction. In a histopatho-
logic context, patch-based regions visualizations introduced
in (Pirovano et al., 2020) display features related to tumor
tissue, in addition to providing slide-level heatmaps that im-
prove WSI classification. Different from previous methods
that attempt to provide human-meaningful visualizations,
either from learned representations or image retrieval, our
method is interpretable by nature.

3. Method
Given high-quality Region of Interests (ROIs) extracted
from cytology images, we create an interpretable system to
analyze UM biopsy cytology and reveal GEP subtype based
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Figure 2. System overview of the proposed method. Cell-level features are obtained by aggregation over instance cell segmentation masks
and then embedded into a 2D space. Several slides are embedded in this way to create a representative cell appearance space, and the 2D
embedding space is subsequently distorted to a circle. For every other whole slide image (WSI), cells representations are extracted and
projected with the same embedding process into the circular space, such that one density chart is generated for every slide. Finally, we
find an interpretable rule set to classify UM biopsies based on the density charts.

on overall cell composition of the sample. Our learning-
based system comprises of three parts: 1) instance-level
cell segmentation, 2) cell feature embedding, and 3) inter-
pretable classification. We note that the specifics of each
component may easily be replaced by other techniques since
aspects pertaining to the exact method choice are not the
main focus of our work. In the remainder of this chapter, we
describe a cost-efficient way of weakly labeling our dataset
to enable supervised learning of the cell segmentation net-
work (Section 3.2). Cell-level features are then generated
and embedded into a 2D space for further classification as
described in Section 3.3. Finally, we define an interpretable
classification model within the 2D space to distinguish UM
GEP classes by cell composition (Section 3.4). The system
overview is shown in Figure 2.

3.1. Considerations around interpretability

Before we introduce the technical details of the proposed
method, we first frame our model in the current interpretabil-
ity definition. As proposed in (Murdoch et al., 2019), in-
terpretable machine learning is defined to be the use of
machine-learning models for the extraction of relevant
knowledge about domain relationships contained in data.
Knowledge is considered to be relevant if it provides insight
for a particular audience into a chosen domain problem. Our
proposed method aims to provide an interpretable model
for UM GEP classification to pathologists, who already
possess substantial expertise in reading cytology slides. In-
deed, clinicopathologic features of UM tumors, e. g. ep-

ithelioid cell type and aggressiveness of cancer cells, can
be readily estimated from cytology images and have been
associated with worse patient prognosis and a higher inci-
dence of metastatic disease (Worley et al., 2007). These
risk factors are widely used by pathologists, however, their
accuracy to predict metastatic potential has been shown to
be limited (Schopper & Correa, 2016). Our interpretability
mechanism is motivated by the fact that clinicopathologic
features of UM tumors, e. g., cell appearance, are relevant
knowledge for pathologists to predict UM metastatic risk.
Instead of building interpretable models with the clinico-
pathologic information manually extracted by pathologists
themselves, our system automatically extracts clinicopatho-
logic features (cell appearance features) and summarizes
the cell appearance distribution in a 2-dimensional space,
which is further classified by a simple and interpretable rule
set. While the algorithm was developed in close collabo-
ration with ophthalmic oncologists and pathologists, this
manuscript is limited to describing the proposed system
and characterizing its performance and does not empiri-
cally demonstrate its interpretability on a larger user group.
Doing so will remain subject of future work.

3.2. Instance cell segmentation

There exist no cell annotations for the high-quality ROIs
that are automatically extracted from cytology images us-
ing the method described in (Chen et al., 2020). However,
instance cell segmentation is essential for further cell-level
analysis. Thus, we prepare annotations on a small sub-set
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Figure 3. The ROI annotation procedure. (a) the extracted high-
quality ROI; (b) the generated super-pixels.; (c) the annotations on
super-pixels. Yellow and blue regions are annotated super-pixels
for cancer cells and background, respectively.
with minimal manual labor to enable supervised training of
an instance segmentation network. Figure 3 presents the
annotation procedure. In detail, we randomly select 500
ROIs from the 131k pool and partially annotate super-pixels
generated by SLIC (Achanta et al., 2010) to reduce the an-
notation workload. We group all super-pixels within any
annotated cells to generate instance-level annotations. We
trained the instance segmentation network YOLACT (Bolya
et al., 2019) on the annotated ROIs, by converting anno-
tated super-pixels into pixel level annotations. We chose
YOLACT because it can be easily modified to enable train-
ing on partially annotated data. Unlike two-stage segmenta-
tion networks, e. g. Mask RCNN (He et al., 2017), which
first detects candidate regions to then classify and segment
these regions in the second stage, YOLACT breaks the in-
stance segmentation into two parallel tasks: (1) generating
a dictionary of non-local prototype masks over the entire
image, and (2) predicting a set of linear combination coef-
ficients per instance. We compute all loss functions, e. g.
semantic segmentation loss, only in annotated areas. All
ROIs are finally tested to extract cells.

3.3. Cell-level feature embedding

Previously, pathologists have attempted to quantify different
cell components, such as nuclear size and nucleolar size, to
predict the behavior of tumors. Our approach is similar to
this process as it extracts network feature representations of
cells, which we assume contain information about cell ap-
pearance. Cell-level features Fc for cell c are then extracted
from the entire feature map F using the segmentation mask
Mc with masked average pooling:

Fc = Avg(F [Mc]) , (1)

where F is the output of the backbone network architecture.

To prepare subtype classification based on cell composi-
tion, and improve classification performance, we embed all
cell-level features in 20 GEP class 1 slides to create a 2D
embedding space with UMAP (McInnes et al., 2020). All
other slides are then embedded into that space, to represent
the respective cell composition. We expect slides of dis-
tinct GEP classes have different cell composition, and thus
distribution in the 2D embedding space. The embedding

space is created using slides of one GEP class only to po-
tentially maximize the difference of GEP class 1 and class
2 representation in the embedding space.

3.4. Interpretable Classification

Based on our hypothesis that slide-level cell composition,
and thus distributions in the 2D cell appearance embedding
space, should be different between GEP classes, we devise
an interpretable algorithm that reasons based on these repre-
sentations. Direct comparisons between distributions, e. g.
chi-square test (Pearson, 1900) and Kolmogorov-Smirnov
tests (Kolmogorov, 1933), are complicated and not usually
interpretable. Instead, we partition the embedding space
and analyze the region densities. Because cells with similar
appearance, thus similar features, are close to each other in
the embedding space, the density of each region represents
the portion of cells with a specific kind of cell appearance in
the slide. To make it easier to define the spatial partitioning
of the embedding space, we first distort the space into a unit
circle. We treat the center of gravity of all embedded cells
as the origin. Then, we normalize to unity the scale of all
embedded cells in every degree of angle in polar coordi-
nate, so that the whole embedding space is distorted to a
unit circle. Parameters in circular distortion are determined
simultaneously with the embedding generation and are fixed
when embedding new slides. Finally, we divide the unit
circle equally into 12 regions, as shown in Figure 4. Since
we posit that each GEP class will have different densities
in distinct regions, in addition to the individual densities of
these regions (Di), we define the relative densities (Di/Dj)
as input variables for classification. Finally, an interpretable
bayesian rule set algorithm (Wang et al., 2017) takes all
these 78 input variables (12 values (Di), and 66 relations
(Di/Dj)) for GEP classification.

Different from logistic regression (which is only inter-
pretable in low dimensional problem settings because
humans can handle at most 7 ± 2 cognitive entities at
once (Miller, 2020; Cowan, 2010)), the rule set algorithm is
not limited by the number of input variables. The number
of arguments in each rule can be controlled, as simple as
determining the largest allowed depth of a tree. In addition,
it is different from a random forest (which uses majority
vote, and is thus not interpretable) since here, the predicted
output is determined once the sample obeys at least one rule
in the rule set.

4. Experiments
We demonstrate that our proposed interpretable learning
pipeline does not compromise on performance of UM sub-
typing when compared to deep black box models. We also
demonstrate an additional, interactive tool for expert review
of cell level composition through interaction with the 2D
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Figure 4. (a) The definition of spatial partitioning and density charts in the distorted 2D embedding space. (b) The density chart of all
cells in GEP class 1; (c) Two density chart examples of GEP class 1 slides; (d) The density chart of all cells in GEP class 2; (e) Two
density chart examples of GEP class 2 slides. Examples in (c) and (e) are all correctly predicted samples by using the rule set defined in
Equation 2.

embedding space. By simply clicking on areas of interest in
the density charts, users may retrieve and visually inspect
cells that are representative of the appearance in that specific
embedding location. Details are shown in Figure 5.

4.1. Experimental setting

Dataset: The dataset we use includes 100 cytology sam-
ples from 88 uveal melanoma patients. To the best of our
knowledge, this is the largest dataset on UM cytology. The
dataset contains 50 slides from 43 patients with GEP class
1 and 50 slides from 45 patients with GEP class 2. The
cellular aspirates obtained from cytology of each tumor
were submitted for cytology and GEP testing. The cytology
specimen was flushed on a standard pathology glass slide,
smeared, and stained with hematoxylin and eosin. The spec-
imen submitted for GEP was flushed into a tube containing
extraction buffer and submitted for DecisionDx-UM test-
ing. Whole slide scanning was performed for each cytology
slide at a magnification of 40x. Automatic ROI extraction is
performed using (Chen et al., 2020), resulting in a total of
131, 816 high-quality ROIs across all slides.

Implementation details: Super-pixel algorithm
SLIC (Achanta et al., 2010) is implemented follow-
ing (Kim), where the number of components is 400, and the
Euclidean distance ratio is 1. On average, each of the 500
randomly sampled ROI for manual annotation has 9 cells
and 38 background super-pixels annotated. The number
of prototypes in YOLACT is doubled to 64 to potentially
segment more cells within every ROI. The segmentation
model is optimized using Adam (Kingma & Ba, 2014) with
a learning rate of 10−5 and 4000 iterations with a batch size
of 1. We train the model on 450 annotated ROIs and vali-

date on the other 50 ROIs. We empirically split the circular
embedding space into 12 partitions, as shown in Figure 4,
which in internal development was found to yield the best
performance compared to other split approaches. All cells
that map outside the circular embedding space are projected
to the nearest region. For the interpretable classification, we
use 80% of the projected slides in both class 1 and class 2
for training (64) and the other 20% for testing (16). The
rule set algorithm is trained with simulated annealing pro-
cedure as described in (Wang et al., 2017). The maximal
length of each rule in the rule set is set to 2 to preserve its
intelligibility.

4.2. Cell Segmentation Performance

We use Mean Average Precision (mAP) as the main evalu-
ation metric for cell segmentation performance. The mAP
is about 70% when Intersection-Over-Union (IoU) is larger
than 50%, which indicates that the segmentation process
catches a fairly good number of cancer cells. However,
mAP is low with high IoU threshold, because of the low
quality of super-pixel-based annotations on the cells’ bound-
ary. Table 1 and Figure 6 present both quantitative and
qualitative results, respectively. The algorithm can easily
tell apart cancer cells from blood cells, while some cancer
cells with ambiguous boundaries are missed. We attribute
this to the low quality of super-pixels for these cells during
annotation. As a result, cells with ambiguous boundaries are
usually skipped in annotation if more clear cells exist in the
same ROI. Because there exist numerous cells in each slide,
missing some cells at random will not significantly impact
the overall cell composition, and further, the classification
performance.
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Figure 5. The additional tool for embedding space interaction. For every slide embedding chart, users can click any area of interest, i. e.
the green/blue cross location. Several closest cells in the embedding space are visualized in native and scaled resolution.

Figure 6. Examples of segmentation results. The segmentation
network is able to (a) separate cancer cells (purple, large) from
blood cells (red, small); (b) segment cells with all sizes, but (c)
misses some ambiguous cells. The numbers within the boxes
correspond to confidence scores.
4.3. UM subtype classification

We compare our proposed method with a previously pro-
posed deep black box model (Coudray et al., 2018; Liu et al.,
2020) evaluated on the same dataset, which classifies UM
subtype directly from ROIs. In (Coudray et al., 2018), slide-
level subtype prediction is obtained by simply averaging
class predictions for all corresponding ROIs. Both, the black
box and our proposed method have the same backbone net-
work architecture (ResNet-50 (He et al., 2015)) and the same
training and testing split for a fair comparison. We find that
the accuracy performance of our method (87.5%) compares
favorably to the black box approach following (Coudray
et al., 2018) (83.3%), and more importantly, is interpretable
based on the following rule set over the density chart (Di),
and thus, over the cell appearance composition of the whole
slide:

D6/D11 > 1.5 AND D1 < 0.07

OR
D7/D12 ≤ 0.4

(2)

There only exist 3 arguments in the rule set, which makes
algorithmic recommendations transparent and verifiable,
while enabling users to understand overall cell composition.
This rule set was visually represented already in Figure 1.

Table 1. mAP for segmentation boxes and masks with different
IoU threshold.

IoU 0.5 0.6 0.7 0.8 0.9
box 70.67% 64.41% 49.20% 27.52% 3.24%
mask 69.30% 64.72% 53.07% 33.91% 2.49%

4.4. Ablation Study

We conduct an ablation study of the rule-based interpretable
classification to benchmark its performance against other
classification methods, i. e. logistic regression, Support Vec-
tor Machine (SVM) and Artificial Neural Network (ANN).
We also compare different embeddings, by creating the ini-
tial UMAP embedding space with either, GEP class 1 or
GEP class 2 slides. After the embedding space creation,
only 80 slides remain to train and evaluate the classification
models. Therefore, we also introduce an ensemble method
to enrich the input data by creating synthetic cell composi-
tions. To create a synthetic slide, we randomly selected 30%
cells from one slide and 1% cells from all the other slides in
the same class as all the cells in the synthetic slide. Then,
the synthetic slide will represent the main pattern of one
observed slide but also introduce other variations. We cre-
ated 100 synthetic slides for each class using this approach,
which is indicated as ”Ensemble” in Table 2. The simple
ANN we used is fc(8) + ReLU + fc(1), where n in fc(n)
means the number of output channels. To evaluate the meth-
ods, we then perform 100 random training/testing splits of
our dataset on the patient-level and train all models on every
split. The mean results and the corresponding confidence
intervals are summarized in Table 2.

Logistic regression has the lowest testing accuracy (75.14%)
and the rule set achieves the highest performance (87.50%),
which is comparable to SVM (82.07%) and ANN (83.71%).
Creating the embedding from distinct GEP classes results
in similar accuracy of the rule set algorithm (87.50% v.s.
84.33%). As in the previous comparisons to black box
models, the rule set approach has the added benefit of being
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Table 2. Ablation study of interpretable classification with different methods and an ensemble technique. LR refers to logistic regression.
Rule Set (class k, k = 1, 2) refers to results using the embedding created from class k slides.

w/o Ensemble w/ Ensemble
Accuracy # of rules Accuracy # of rules

LR 67.50± 5.56% N/A 75.14± 9.00% N/A
SVM 83.00± 6.37% N/A 82.07± 8.23% N/A
ANN 82.86± 8.33% N/A 83.71± 10.15% N/A
Rule Set (class 1) 86.36 ± 10.25% 2.28± 0.57 87.50 ± 9.56% 2.11± 0.37
Rule Set (class 2) 81.93± 8.02% 2.06± 0.49 84.33± 10.68% 1.96± 0.31

interpretable. Logistic regression and SVM models suffer
in this regard due to the high dimensionality of the input
representation (78). Dimensionality reduction techniques,
e. g. principle component analysis (PCA), exist but are not
applicable here because the number of input variables (78)
is larger than the number of training samples (64). Finally,
all models reach higher accuracy with the ensemble except
SVM.

Due to the fact that our segmentation model is not perfect,
we also evaluate the rule set model for different segmenta-
tion results. During early training, the segmentation model
will first identify the most clear cancer cells, but along
with plenty of false positives. As the optimization pro-
gresses, fewer cancer cells are segmented but much fewer
false positives occur. The accuracy of the rule set algo-
rithm for segmentation results after 2000, 3000 and 4000
training iterations is 77.23± 10.98%, 84.64± 10.46% and
87.50 ± 9.56%, which suggests that the algorithm favors
the output of a highly specific cell segmentation algorithm.

5. Discussion
Our overall system utilizes the segmentation features to gen-
erate the embedding and classify UM subtypes based on
slide-level cell composition. We assume that cell compo-
sition will be different across the two GEP classes, which
will result in different cell density chart representations of
slides from the two subtypes that can then be distinguished
using an interpretable rule-based algorithm. This hypothesis
is supported by our experiments. One aspect of the current
approach is that we do not currently interpret the embedded
features themselves, e. g., by classifying cell types, so that re-
gions in the density chart do not immediately carry semantic
information. This circumstance may limit the interpretabil-
ity of our tool for non-subject matter experts, however, we
emphasize that the tool is designed with pathologists as pri-
mary user group in mind who possess substantial domain
expertise. While the algorithm does not currently identify
specific cell types during embedding, pathologists are do-
main experts and will be able to explore and contextualize
cell appearance in different embedding regions using the

graphical user interface (Figure 5). Doing so as part of a
training period may allow pathologists to understand and
identify the major cell types in specific embedding regions,
linking pie chart sectors to semantic cell types. Experience
in observing how GEP class 1 and class 2 slides behave in
the pie chart embedding space combined with the above
training may further add to the interpretability of the model.
Future work will investigate how this paradigm compares
to other approaches and black box models in building trust
and confidence in the user group.

In the current form, the circular space is evenly partitioned
into 12 parts. However, this partitioning process could be
further guided by other semantic information, e. g. clus-
tering of specific cell types. If cell type annotations are
available, the segmentation network could also output cell
types for every extracted cells. We would expect to see
clusters of cells types in the embedding space and the par-
titioning process could be further guided by the cell type
clusters. However, such information is not available in our
dataset and it is also unclear whether such approach would
prove beneficial.

The boundary defined by the interpretable rule set could
also be used as a criterion for user trust calibration. If a
slide maps close to the boundary, a little variation could
change the prediction result. Thus, the prediction of that
slide may be perceived as less reliable. We will investigate
in future work whether proximity to the decision boundary
indeed correlates with prediction performance, and more im-
portantly, other clinical outcome measures such as survival.

6. Conclusion
We have presented an automated yet interpretable system
for UM subtyping from fine needle aspiration cytology im-
ages that does not compromise performance compared to
conventional deep black box models. In future work, we
will study how our interpretable model affects treatment
decisions and user trust, as a next step to realize the huge
potential of image-based tests for UM subtyping.
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Süsstrunk, S. Slic superpixels, 2010.

Bolya, D., Zhou, C., Xiao, F., and Lee, Y. J. Yolact:
Real-time instance segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Campanella, G., Hanna, M. G., Geneslaw, L., Miraflor,
A., Silva, V. W. K., Busam, K. J., Brogi, E., Reuter,
V. E., Klimstra, D. S., and Fuchs, T. J. Clinical-grade
computational pathology using weakly supervised deep
learning on whole slide images. Nature medicine, 25(8):
1301–1309, 2019.

Chen, H., Liu, T. A., Correa, Z., and Unberath, M. An
interactive approach to region of interest selection in cyto-
logic analysis of uveal melanoma based on unsupervised
clustering. In International Workshop on Ophthalmic
Medical Image Analysis, pp. 114–124. Springer, 2020.

Chikontwe, P., Kim, M., Nam, S. J., Go, H., and Park, S. H.
Multiple instance learning with center embeddings for
histopathology classification. In International Conference
on Medical Image Computing and Computer-Assisted
Intervention, pp. 519–528. Springer, 2020.

Coudray, N., Ocampo, P. S., Sakellaropoulos, T., Narula,
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