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Abstract. Facilitating quantitative analysis of cytology images of fine
needle aspirates of uveal melanoma is important to confirm diagnosis and
inform management decisions. Extracting high-quality regions of inter-
est (ROIs) from cytology whole slide images is a critical first step. To
the best of our knowledge, we describe the first unsupervised clustering-
based method for fine needle aspiration cytology (FNAC) that automati-
cally suggests high-quality ROIs. Our method is integrated in a graphical
user interface that allows for interactive refinement of ROI suggestions
to tailor analysis to any specific specimen. We show that the proposed
approach suggests ROIs that are in very good agreement with expert-
extracted regions and demonstrate that interactive refinement results in
the extraction of more high-quality regions compared to purely algorith-
mic extraction alone.

Keywords: Human-computer interaction · Unsupervised learning ·
Machine learning · Coarse to fine

1 Introduction

Clinical Background: Uveal melanoma is the most common primary intraocu-
lar malignancy in adults [21]. As standard care for uveal melanoma, Fine Needle
Aspiration Biopsy (FNAB) is often performed to confirm the diagnosis and to
obtain cell aspirates for both Gene Expression Profile (GEP) and Cytology of
Fine Needle Aspirates (FNAC) analysis for prognostication. According to recent
analysis, primary uveal melanoma clusters in two distinct subgroups according
to its GEP; the first corresponding to low grade melanoma with little to no
metastatic risk, and the second corresponding to high grade melanoma with
high metastatic risk, which results in 6 times of 5-year probability of metastatic
death [7]. While GEP analysis of fine needle aspirates has shown good accuracy
for identifying patients at high risk of metastatic disease, the only commercially
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available test is expensive, requires special storage and transportation, has a long
turn around time and is only available in the US. Most importantly, despite its
efficacy, the commercial GEP test still occasionally fails resulting in unpleas-
ant clinical surprises and unexpected early metastatic death. There is increas-
ing evidence that the underlying genetic profile affects cancer growth on multi-
ple scales. Radiomics, for example, exploit this observation to develop imaging-
derived biomarkers that are informative for prognosis [12]. We hypothesize that
such multi-scale analysis will also be useful for prognosis in uveal melanoma.
Specifically in addition to GEP, we would like to extract imaging-features from
FNAC. In addition to complementing GEP analysis, such cytology-based test
could provide a cheap and widely available alternative for prognostication of
uveal melanoma [9]. However, pathologist analysis of FNAC is infeasible, as 1) it
is a very time-consuming and tedious task, and 2) none of the manually defined
cytopathological features proved particularly robust for predicting metastatic
risk.

To reach this goal, we need to facilitate or even automate quantitative analy-
sis of cytology whole slide images (WSIs). To this end, we develop an interactive
tool that our envision will be beneficial in two ways: First, it can be deployed
in pathologist-centric workflows to guide pathologist review, thereby reducing
the experts workload. Second, the tool provides an opportunity for pathologists
to guide algorithmic evaluation, e.g. by refining the content that is submitted
for automated analysis of the slide, e.g. for GEP classification. Such an interac-
tive design may prove beneficial in building trust, accelerating workflows, and
reducing mistakes, of both automated algorithms and pathologists.

We present our first steps in this direction that consider the extraction of
high-quality Region of Interests (ROIs) (areas with multiple clear cancer cells)
from gigapixel-sized histological architecture, FNAC. We propose a Human-
Interactive Computationally-Assisted Tool (HICAT) that supports ROI selec-
tion with a 2-step coarse-to-fine unsupervised clustering. It provides interac-
tivity to allow for patient-specific refinement of ROI selection at application
time. This refinement provides insight in and some control over the region selec-
tion, and results in the extraction of more informative regions compared to the
purely algorithmic extraction. Such human-machine partnership may contribute
to pathologists building trust in AI-assisted tools. HICAT increases Recall in
ROIs from 7.44% to 42.32%, while Precision remains the same 83%. On aver-
age, 1318 ROIs per FNAC are extracted, which contains enough information for
further analysis. Our AI-assisted ROI selection workflow is more than 10 times
faster than manual ROI extraction by pathologists that was used previously [17].

Related Work: Histology WSI and FNAC are two main foci in pathology. His-
tology WSI contains an entire slice of tissue and several learning-based algo-
rithms for ROI extraction have been proposed [3,14,15,19]. FNACs exhibit
high variation in cell quality and artifact, and to our knowledge, all exist-
ing approaches for high-level FNAC analysis operate on manually identified
ROIs [8,10,20]. Due to the small targets (e.g. lesions and organs) in medical
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imaging, coarse-to-fine concepts are widely used. Spatial coarse-to-fine segmen-
tation is applied to target small organs and lesions [6,16,25–27]. Spatial coarse-
to-fine clustering is also commonly used to extract ROIs from high spatial res-
olution WSIs and several machine-learning approaches exist for this task [3,19].
To involve human cognition and refine algorithmic prediction, human interac-
tion with deep learning so far has been largely limited to segmentation prob-
lems [1,2,11,22,23].

Fig. 1. Overview of the HICAT.

2 Method

Given a FNAC image, we seek to extract square-shaped ROIs, similar to those
shown in Fig. 2(a), which lend themselves well for further cell-level algorithmic
analysis. Our ROI extraction pipeline contains of a 2-step clustering that is fol-
lowed by an interactive decision boundary definition to assign image-quality to
centroids. The clustering algorithm will be discussed in Sect. 2.1 and Sect. 2.2.
The first step aims to remove blank images, i.e. Fig. 2(g), to greatly reduce pro-
cessing time for the second step, which further clusters the selected ROIs based
on image content. After the 2-step clustering, a global decision boundary for all
FNACs is defined by centroid-level human annotation. Interactive refinement of
this decision boundary is then possible for every patient and FNAC to improve
the algorithmic ROI selection based on centroid annotation (Sect. 2.3).

2.1 Step-1 Clustering

The given FNAC is first down-sampled such that each pixel in the resulting
image corresponds to the average signal within one area. The size of this area
is only constrained by its compatibility with the following clustering steps. We
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found the size 512×512 is able to perform sufficiently well. K-means clustering is
then used to cluster pixel intensities into 2 centroids that intuitively correspond
to regions with bright and dark average intensities. Since FNACs are acquired
with the bright-field technique, pixels with low and high intensities correspond to
regions with high and low tissue content, respectively. We select the darker cen-
troid for further processing via Step-2 clustering in Sect. 2.2. Because the exact
magnitude of bright and dark centroid intensities varies with cell distribution
and illumination, this scheme is applied to every FNAC slide independently.

Fig. 2. Different types of ROIs in FNACs. (a) High-quality ROIs, which contain more
than 3 clear cancer cells. (b) Blood cell ROIs. (c) Blurred ROIs. (d) Fluid ROIs. (e)
Multi-layer cell ROIs. (f) Artifact ROIs. (g) Blank ROIs. (h) Borderline ROIs, which
contain more than 3 clear cancer cells, but contains a large portion of low-quality areas.

Fig. 3. An example of Step-1 clustered area and some of the corresponding Step-2
clustering ROIs. (a) Step-1 area. (b) Top-left corner. (c) Top-right corner. (d) Bottom-
left corner. (e) Bottom-right corner.

2.2 Step-2 Clustering

Step-2 clustering aims to separate high-quality images with more than 3 clear
cancer cells from low-quality images that either show blood cells, multiple layers
of cells and fluid, are blurred or otherwise corrupted with artifact. Examples
of such images are provided in Fig. 2. Since this separation is based on image
content that, in cytology, can vary considerably across pixels (cf. Fig. 3), a patch-
based network is applied to perform clustering on 228× 228 pixel ROIs in naive
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resolution which is much smaller than the areas extracted from Step-1 cluster-
ing. These patches are extracted with a stride of 128 from the ROIs selected in
Step-1 clustering. A previous state-of-the-art patch-based method, BagNet17 [4]
is used as the backbone. The input images of size 512 × 512 pixels are first
down-sampled 4 times and an average pooling layer with kernel size 6 and stride
4 is attached after the final residual block, so that each output pixel corresponds
to one desired patch (if using other parameters, the receptive field’s size and
stride cannot be guaranteed to take on the desired value). Finally, a convolu-
tional layer with kernel size 1× 1 compresses the feature into a lower-dimension
space with dimension d. We follow [5,24] to involve k-means clustering for the
d-dimension network outputs. K-means centroids and patch assignments are ini-
tialized by the pre-trained network and are fixed in the training phase. L2 loss is
applied to force patch features to be close to the assigned centroid. Centroids and
patch assignments are updated during the validation phase. We reassign empty
centroids during training to avoid trivial parametrization. Step-2 clustering is
trained on all FNACs simultaneously.

Fig. 4. Examples for FNAC-specific ROI refinement GUI. For each screenshot, top-
left image is the down-sampled WSI, top-right image shows the corresponding spatial
states for all ROIs, white/light grey/grey means high-/mix-/poor-quality ROIs. Dark
grey corresponds to blank images removed by Step-1 clustering. Pink pixels correspond
to uncertain ROIs. Bottom left image is the corresponding full resolution ROI that the
mouse hovers over. By double clicking the pixel on the down-sampled WSI or state
image, a window in bottom right will pop out for annotation. (a) shows the overall
behaviour of the state image. (b) shows the zoomed-in version for detail visualization.

In order to reduce the number of centroids that focus on fluid and artifact
images, we introduce a centroid-based coarse-to-fine clustering strategy. Only a
portion of centroids are initialized first, and new centroids are inserted during
training in order to increase the probability of these centroids to account for
cell images, which is referred as CTF in Fig. 1. We reassign/insert empty/new
centroids around the centroid with the largest standard deviation of its assigned
samples in feature space, instead of the centroid with the largest number of sam-
ples [5,24]. It is referred as STD in Fig. 1. This is because of 2 reasons: 1) A
considerable number of fluid and artifact images exists and there is no use to
further insert centroids for these images. 2) Fluid and artifact images are eas-
ier to separate because of the difference in complexity compared to cell images.
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Consequently, centroids with cell images tend to have larger standard deviation
among the assigned samples in feature space, so that inserted/re-assigned cen-
troids are more likely to focus on cell images. The re-assignment and insertion
is processed during the validation phase.

2.3 Interactive Centroid Assignment and Refinement

After Step-2 clustering, every centroid contains ROIs that exhibit similar appear-
ance. However, at this point it is still unclear which of the ROIs in the centroids
are high-/low-quality. To provide this semantic definition with minimal manual
annotation requirement, we developed a Graphical User Interface (GUI) that
allows for rapid centroid annotation. To this end, 10 ROIs from 10 random cen-
troids are displayed for the user to classify. After several iterations, each centroid
has more than 10 high-/poor-quality annotations. The ratio of high-quality ROIs
classified to every centroid is then used to define a centroid-level boundary that
separates between high- and low-quality ROIs. Because cell quality in FNACs
has large variation, some ROIs cannot be clearly classified as high-/low-quality,
e.g. Fig. 2(h). Therefore, we allow for some mix-quality centroids that contain
roughly an equal number of high-/low-quality ROI annotations. Although there
exists high-quality ROIs in mix-quality centroids, we exclude them to avoid
introducing poor-quality images to influence further analysis.

During application, due to high variations in FNACs, the classifier based
on the above procedure may not perform perfectly when suggesting ROIs in
new FNACs. To allow for the refinement of ROI suggestions, a patient-specific
refinement tool is created for pathologists to interact with, as shown in Fig. 4.
Specifically, high-/low-/mix-quality assignments from boundary definition are
visualized and synchronized with the corresponding FNAC image. The user can
hover the mouse over the FNAC to display the underlying ROI in native resolu-
tion, and can simply click it to re-annotate if necessary. In this case, the selected
ROI and all ROIs with similar features {x, where ||x − F ||2 < λ2L1} are all
re-annotated, where F is the selected ROI’s feature, L1 is the distance to the
closest centroid and λ2 is a constant. Uncertain ROIs are also identified and dis-
played to users as recommended for re-annotation. Using L1, L2 as the distance
of an ROI feature to the 2 closest centroids. The ROI is considered uncertain if
the two closest centroids are high- and low-quality, respectively, and satisfies

||L1 − L2||2
min{L1, L2} < λ1 (1)

where λ1 is a constant. The result of every click re-annotation is reflected in real
time. The user has full control over when to stop the refinement.

3 Experiment

3.1 Experiment Setup

Dataset: The dataset we use includes 100 FNAC samples from 100 uveal
melanoma patients. The cellular aspirates obtained from FNACs of each tumor
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were submitted to cytology and GEP testing. The cytology specimen was flushed
on a standard pathology glass slide, smeared, and stained with hematoxylin and
eosin. The specimen submitted for GEP was flushed into a tube containing
extraction buffer and submitted for DecisionDx-UM testing. Whole slide scan-
ning was performed for each cytology slide at a magnification of 40x, using the
Aperio ScanScope AT machine, and the high-magnification digital image was
examined using the Aperio Imagescope software.

516 areas of size 1716 × 926 are manually extracted and annotated from
20 slides by an expert pathologist. Every area is split into 8 small areas with
equal size. Each small area is further split into 9 ROIs where the stride of ROI
extraction is half of their width and height. All of these ROIs are annotated as
high-/low-quality images, which results in 37, 152 annotated ROIs. The criterion
for high-quality images is the same as Fig. 2(a). All our experiments are trained
on the remaining 80 slides and tested on the 20 slides with annotations.

Implementation Details: 259, 203 areas are extracted by Step-1 clustering. In
Step-2 clustering, each area corresponds to 9 ROIs with size 228 × 228, which
results in a total of 2, 332, 827 ROIs for training. The length d of the output fea-
ture vector is 16. Centroid-based coarse-to-fine clustering is first initialized with
32 centroids. 4 new centroids are inserted after every training epoch until a total
of 100 centroids exists. We implement the model using PyTorch [18] for Step-2
clustering, and initialize them with ImageNet pre-trained weights provided by [4].
All models are optimized by Adam [13] with a learning rate of 10−3. All interac-
tive centroid assignments and specific boundary refinement were performed by
an expert pathologist. During centroid definition, centroids with greater than
70% of ROIs annotated as high-quality are classified as high-quality centroids,
while centroids with fewer than 30% are classified as low-quality centroids. The
other centroids are mix-quality centroids. For boundary refinement, the param-
eters are λ1 = 0.2, λ2 = 0.5.

Table 1. Ablation study for clustering algorithm. DeepCluster (DC) is DCN [24] with
BagNet17 [4] as backbone. “CTF” indicates the use of the proposed centroid-based
coarse-to-fine strategy. “STD” indicates the use of the proposed mechanism of insert-
ing/reassigning new/empty centroids to be around the centroid with the largest stan-
dard deviation of its assigned samples in feature space. (Otherwise, to be around the
centroid with most samples). Numbers of high-/low-quality centroids are also reported.

Model Recallgb Recallgmb Precisiongmb Accuracy #high-quality #low-quality

DC [4,24] 11.74% 7.44% 83.17% 61.43% 10 60

DC+STD 34.71% 7.89% 85.99% 63.63% 18 43

DC+STD+CTF 51.38% 27.83% 91.56% 70.90% 23 51

Evaluation Metrics: The final goal for our proposed extraction is to max-
imize the number of high-quality ROIs and to minimize the number of
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low-quality ROIs provided for further analysis. To evaluate our success, we cal-
culate the recall, precision and accuracy on the ROIs in the 20 slides with man-
ually extracted ROIs. Because there exist mix-quality centroids, we first report
recall and precision for images only in high-/low-quality centroids, denoted as
Recallgb,Precisiongb. We also report recall, precision and accuracy for all anno-
tated images, by treating mix-quality centroids as low-quality centroids, denoted
as Recallgmb,Precisiongmb and Accuracy. Because Precisiongb is the same as
Precisiongmb, only Precisiongmb is recorded.

3.2 Ablation Study for Clustering Algorithm

In order to compare different clustering algorithms, human-interactive bound-
ary definition is performed separately for all models to classify high-/mix-/low-
quality centroids by the same expert pathologist. We conduct an ablation study
for clustering algorithm to analyze the contributions of its novel components. The
baseline is the combination of the deep clustering network, DCN [24], with Bag-
Net17 [4] (referred to as DeepCluster) with 100 centroids. The performance by
adding the two novel components: centroid-based coarse-to-fine concept (referred
to as CTF ) and the centroid insertion/reassignment algorithm (referred to as
STD) is compared. The Step-1 clustering is kept the same across all models,
which eliminates 96.5% areas as blank areas. Results are summarized in Table 1.

The effect of our proposed centroid insertion/reassignment algorithm is
reflected in the comparison of DeepCluster vs. DeepCluster+STD. Recallgb and
Precisiongmb increase from 11.74% and 83.17% to 34.71% and 85.99% by using
STD. Improvements are due to our observation that standard deviation of the
assigned samples are efficient to tell apart centroids for high-/low-quality images.
More centroids for high-quality images result in better performance.

The effect of centroid-based coarse-to-fine method is reflected in the com-
parison of DeepCluster+STD vs. DeepCluster+STD+CTF. By adding the
centroid-based coarse-to-fine module to DeepCluster+STD, we observe substan-
tial improvements in Recallgmb and Precisiongmb which increase from 7.89% and
85.99% to 27.83% and 91.56%, respectively. The improvement is in line with our
motivation and hypothesis that more centroids are assigned to focus on images
with different cells and various visual quality. The increase in the number of
high-quality centroids further supports our hypothesis.

Table 2. Ablation study for human interactive patient-specific boundary refinement.

Model Recallgb Recallgmb Precisiongmb Accuracy

Without boundary refinement 51.38% 27.83% 91.56% 70.90%

HICAT 59.47% 42.32% 83.09% 74.18%
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3.3 Ablation Study for Interactive Refinement

The performance of interactive refinement of ROI suggestion is shown in Table 2.
FNAC and the ROIs’ labels after centroid definition is synchronously visualized
as Fig. 4. An expert pathologist finished the human interactive boundary refine-
ment for all testing FNACs. Less than 50 re-annotation clicks are performed for
each slide. The pathologist stopped the process for each slide, once he deter-
mined there were adequate high-quality ROIs selected for further analysis and
few low-quality ROIs exist. Comparing with/without boundary refinement shows
that Recallgmb goes drastically up from 27.83% to 42.32%. The reduced preci-
sion from 91.56% to 83.09% may be attributed to a conservative selection of
the pathologist. However, since adequate high-quality ROIs are still available
for further analysis, this decrease is likely not problematic. The boost in per-
formance is due to the variation in different FNACs. Pathologists may interact
with our tool to adjust the inclusion criteria based on a specific FNAC, e.g. when
few cells are visible, the selection criteria for high-quality ROIs can be relaxed.
Finally, 1318 ROIs are extracted on average per FNAC, which contain adequate
information for further analysis. The whole application process takes 15 min per
FNAC, which is more than 10 times faster than manual ROI extraction. (3 min
for 2-step clustering and 12 min for boundary refinement.)

4 Conclusion

In this paper, we propose an interactive and computationally-assisted tool for
high-quality ROI extraction from FNACs. Our method relies on 2-step unsuper-
vised clustering of ROI appearance and content to automatically suggest ROI of
acceptable quality. These suggestions can then be refined interactively to adapt
ROI selection to specific patients. We hope to contribute effective tools that sup-
port quantitative analysis of FNACs to, in the future, improve prognostication
of patients suffering from uveal melanoma.
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