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Abstract. Visual cues of enforcing bilaterally symmetric anatomies as
normal findings are widely used in clinical practice to disambiguate subtle
abnormalities from medical images. So far, inadequate research attention
has been received on effectively emulating this practice in computer-aided
diagnosis (CAD) methods. In this work, we exploit semantic anatomi-
cal symmetry or asymmetry analysis in a complex CAD scenario, i.e.,
anterior pelvic fracture detection in trauma pelvic X-rays (PXRs), where
semantically pathological (refer to as fracture) and non-pathological (e.g.
pose) asymmetries both occur. Visually subtle yet pathologically critical
fracture sites can be missed even by experienced clinicians, when limited
diagnosis time is permitted in emergency care. We propose a novel frac-
ture detection framework that builds upon a Siamese network enhanced
with a spatial transformer layer to holistically analyze symmetric image
features. Image features are spatially formatted to encode bilaterally
symmetric anatomies. A new contrastive feature learning component in
our Siamese network is designed to optimize the deep image features
being more salient corresponding to the underlying semantic asymme-
tries (caused by pelvic fracture occurrences). Our proposed method have
been extensively evaluated on 2,359 PXRs from unique patients (the
largest study to-date), and report an area under ROC curve score of
0.9771. This is the highest among state-of-the-art fracture detection
methods, with improved clinical indications.
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1 Introduction

The computer-aided diagnosis (CAD) of abnormalities in medical images is
among the most promising applications of computer vision in healthcare. In par-
ticular, X-ray CAD represents an important research focus [4,5,15,20,25,28,34].
However, the high variations of abnormalities in medical imagery pose non-
trivial challenges in differentiating pathological abnormalities from radiological
patterns caused by normal anatomical and imaging-condition differences. At
the same time, many anatomical structures are bilaterally symmetric (e.g., the
brain, skeleton and breast) which suggests that the detection of abnormal radi-
ological findings can exploit semantically symmetric anatomical regions (Fig. 1).
Indeed, using bilaterally symmetric visual cues to confirm suspicious findings is
a strongly recommended and widely adopted clinical practice [7]. Our aim is to
emulate this practice in CAD and apply it to the problem of effectively detecting
subtle but critical anterior pelvic fractures in trauma pelvic X-rays (PXRs).

§

Fig. 1. Example medical images where anatomical symmetry helps to detect abnor-
malities. The top 3 images represents infiltration in chest X-Rays, stroke in brain CT,
and osteoarthritis in knee X-Rays. The bottom 2 images represent masses in mammog-
raphy and fractures in PXRs. These abnormalities can be better differentiated when
the anatomically symmetric body parts are compared.

Several studies have investigated the use of symmetry cues for CAD, aiming
to find abnormalities in brain structures in neuro-imaging [18,22,32], breasts
in mammograms [24], and stroke in CT [1]. All of these works directly employ
symmetry defined on the image or shape space. However, under less constrained
scenarios, especially the ones using projection-based imaging modalities in an
emergency room setting, e.g., PXRs, image asymmetries do not always indicate
positive clinical findings, as they are often caused by other non-pathological
factors like patient pose, bowel gas patterns, and clothing. For these settings, a
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workflow better mirroring the clinical practice, i.e. robust analysis across seman-
tic anatomical symmetries, is needed. Using semantic anatomical symmetry to
facilitate CAD in such complex scenarios has yet to be explored.

To bridge this gap, we propose an anatomy-aware Siamese network (AASN)
to effectively exploit semantic anatomical symmetry in complex imaging scenar-
ios. Our motivation comes from the detection of pelvic fractures in emergency-
room PXRs. Pelvic fractures are among the most dangerous and lethal traumas,
due to their high association with massive internal bleeding. Non-displaced frac-
tures, i.e., fractures that cause no displacement of the bone structures, can be
extraordinarily difficult to detect, even for experienced clinicians. Therefore, the
combination of difficult detection coupled with extreme and highly-consequential
demands on performance motivates even more progress. Using anatomical sym-
metry to push the performance even higher is a critical gap to fill.

In AASNSs, we employ fully convolutional Siamese networks [11] as the back-
bone of our method. First, we exploit symmetry cues by anatomically reparam-
eterizing the image using a powerful graph-based landmark detection [21]. This
allows us to create an anatomically-grounded warp from one side of the pelvis
to the other. While previous symmetry modeling methods rely on image-based
spatial alignment before encoding [24], we take a different approach and per-
form feature alignment after encoding using a spatial transformer layer. This is
motivated by the observation that image asymmetry in PXRs can be caused by
many factors, including imaging angle and patient pose. Thus, directly warp-
ing images is prone to introducing artifacts, which can alter pathological image
patterns and make them harder to detect. Since image asymmetry can be seman-
tically pathological, i.e., fractures, and non-pathological, e.g., imaging angle and
patient pose, we propose a new contrastive learning component in Siamese net-
work to optimize the deep image features being more salient corresponding to the
underlying semantic asymmetries (caused by fracture). Crucially, this mitigates
the impact of distracting asymmetries that may mislead the model. With a sen-
sible embedding in place, corresponding anatomical regions are jointly decoded
for fracture detection, allowing the decoder to reliably discover fracture-causing
discrepancies.

In summary, our main contributions are four folds.

— We present a clinically-inspired (or reader-inspired) and computationally
principled framework, named AASN, which is capable of effectively exploiting
anatomical landmarks for semantic asymmetry analysis from encoded deep
image features. This facilitates a high performance CAD system of detecting
both visually evident and subtle pelvic fractures in PXRs.

— We systematically explore plausible means for fusing the image based anatom-
ical symmetric information. A novel Siamese feature alignment via spatial
transformer layer is proposed to address the potential image distortion draw-
back in the prior work [24].

— We describe and employ a new contrastive learning component to improve
the deep image feature’s representation and saliency reflected from semanti-
cally pathological asymmetries. This better disambiguates against the existing
visual asymmetries caused by non-pathological reasons.
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— Extensive evaluation on real clinical dataset of 2,359 PXRs from unique
patients is conducted. Our results show that AASN simultaneously increases
the AUC and the average precision from 96.52% to 97.71% or from 94.52%
to 96.50%, respectively, compared to a strong baseline model that does not
exploit symmetry or asymmetry. More significantly, the pelvic fracture detec-
tion sensitivity or recall value has been boosted from 70.79% to 77.87% when
controlling the false positive (FP) rate at 1%.

2 Related Work

Computer-Aided Detection and Diagnosis in Medical Imaging. In
recent years, motivated by the availability of public X-ray datasets, X-ray CAD
has received extensive research attention. Many works have studied abnormal-
ity detection in chest X-rays (CXRs) [5,20,28,34]. CAD of fractures in muscu-
loskeletal radiographs is another well studied field [6,8,35]. Since many public X-
ray datasets only have image-level labels, many methods formulate abnormality
detection as an image classification problem and use class activation maps [38]
for localization [28,34]. While abnormalities that involve a large image area
(e.g., atelectasis, cardiomegaly) may be suitable for detection via image classi-
fication, more localized abnormalities like masses and fractures are in general
more difficult to detect without localization annotations. While methods avoid-
ing such annotations have been developed [20,35], we take a different approach
and use point-based localizations for annotations, which are minimally labori-
ous and a natural fit for ill-defined fractures. Another complementary strategy to
improve abnormality detection is to use anatomical and pathological knowledge
and heuristics to help draw diagnostic inferences [23]. This is also an approach
we take, exploiting the bilateral symmetry priors of anatomical structures to
push forward classification performance.

Image Based Symmetric Modeling for CAD. Because many human
anatomies are left-right symmetric (e.g., brain, breast, bone), anatomical sym-
metry has been studied for CAD. The shape asymmetry of subcortical brain
structures is known to be associated with Alzheimer’s disease and has been
measured using both analytical shape analysis [18,32] and machine learning
techniques [22]. A few attempts have been explored using symmetric body parts
for CAD [1,24]. For instance, Siamese networks [11] have been used to com-
bine features of the left and right half of brain CTs for detecting strokes. A
Siamese Faster-RCNN approach was also proposed to detect masses from mam-
mograms by jointly analyzing left and right breasts [24]. Yet, existing methods
directly associate asymmetries in the image space with pathological abnormali-
ties. While this assumption may hold in strictly controlled imaging scenarios, like
brain CT/MRIs and mammograms, this rarely holds in PXRs, where additional
asymmetry causing factors are legion, motivating the more anatomically-derived
approach to symmetry that we take.

Siamese Network and Contrastive Learning. Siamese networks are an
effective method for contrastive learning that uses contrastive loss to embed
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Fig. 2. Illustration of ROI and warp generation steps.

semantically similar samples closer together and dissimilar images further
away [11]. Local similarities have also been learned using Siamese networks [37]
and applied to achieve image matching/registration [26,29]. The embedding
learned by Siamese networks has also been applied to one-shot image recog-
nition [17] and human re-identification [30,31]. Fully convolutional Siamese net-
works have also been proposed to produce dense and efficient sliding-window
embeddings, with notable success on visual object tracking tasks [2,9,10].
Another popular technique for contrastive learning is triplet networks [12]. We
also use Siamese networks to learn embeddings; however, we propose a process
to learn embeddings that are invariant to spurious asymmetries, while being
sensitive to pathology-inducing ones.

3 Method

3.1 Problem Setup

Given a PXR, denoted as I, we aim to detect sites of anterior pelvic fractures.
Following the widely adopted approach by CAD methods [20,33,34], our model
produces image-level binary classifications of fracture and heatmaps as fracture
localization. Using heatmaps to represent localization (instead of bounding box or
segmentation) stems from the inherent ambiguity in the definition of instance and
boundary of pathological abnormalities in medical images. For instance, a fracture
can be comminuted, i.e. bone breaking into multiple pieces, resulting in ambiguity
in defining the number of fractures. Our model takes a cost-effective and flexible
annotation format, a point at the center of each fracture site, allowing ambiguous
fracture conditions to be flexibly represented as one point or multiple points. We
dilate the annotation points by an empirically-defined radius (2 cm in our experi-
ment) to produce a mask for the PXR, which is the training target of our method,
denoted as M. In this way, we execute heatmap regression, similar to landmark
detection [36], except for center-points of abnormalities with ambiguous extents.
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Fig. 3. System overview of the proposed AASN. The Siamese encoding module takes
two pre-processed ROIs as input and encodes them using dense blocks with shared
weights. After warping and alignment, the encoded feature maps are further processed
by a Siamese feature fusion module and a Siamese contrastive learning module to
produce a fracture probability map and a feature distance map, respectively.

3.2 Anatomy-Grounded Symmetric Warping

Given the input PXR image, our method first produces region of interest (ROI)
of the anterior pelvis and anatomically-grounded warp to reveal the bilateral
symmetry of the anatomy. The steps of ROI and warp generation are illustrated
in Fig.2. First, a powerful graph-based landmark detection [19] is applied to
detect 16 skeletal landmarks, including 7 pairs of bilateral symmetric landmarks
and 2 points on pubic symphysis. From the landmarks, a line of bilateral sym-
metry is regressed, and the image is flipped with respect to it. Since we focus
on detecting anterior pelvic fractures, where the dangers of massive bleeding is
high and fractures are hard to detect, we extract ROIs of the anterior pelvis
from the two images as a bounding box of landmarks on the pubis and ischium,
which are referred as I and Iy. A pixel-to-pixel warp from Iy to I is generated
from the corresponding landmarks in Iy and I using the classic thin-plate spline
(TPS) warp [3], denoted as T. Note, the warp T is not directly used to align
the images. Instead, it is used in our Siamese network via a spatial transformer
layer to align the features.

3.3 Anatomy-Aware Siamese Network

The architecture of AASN is shown in Fig. 3. AASN contains a fully convolutional
Siamese network with a DenseNet-121 [13] backbone. The dense blocks are split
into two parts, an encoding part and a decoding part. It is worth noting that
AASN allows the backbone network to be split flexibly at any block. For our
application, we split at a middle level after the 3rd dense block, where the
features are deep enough to encode the local skeletal pattern, but has not been
pooled too heavily so that the textual information of small fractures is lost.
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Fig. 4. Transition layer modification options for feature map fusion. (a) Feature map
fusion before transition. (b) Feature map fusion after transition. (¢) Feature map fusion
inside transition

The encoding layers follow a Siamese structure, with two streams of weight-
shared encoding layers taking the two images I and Iy as inputs. The encoder
outputs, denoted as F' and FY, provide feature representations of the original
image and the flipped image, respectively. The spatial alignment transform 7T is
applied on FY, resulting in FJQ, making corresponding pixels in F' and FJ’r repre-
sent corresponding anatomies. The two aligned feature maps are then fused and
decoded to produce a fracture probability map, denoted as Y. Details of feature
map fusion and decoding will be described in Sect.3.4. We produce the proba-
bility heatmap as fracture detection result to alert the clinician the presence of a
fracture and also to guide his or her attention (as shown in Fig.6). Since pelvis
fractures can be very difficult to detect, even when there is a known fracture,
this localization is a key feature over-and-above image-level predictions.

The model is trained using two losses. The first loss is the pixel-wise binary
cross entropy (BCE) between the predicted heatmap Y and the ground truth
M, denoted as Lj. The second loss is the pixel-wise contrastive loss between the
two feature maps, F and F%, denoted as L.. Details of the contrastive loss will
be discussed in Sect. 3.5. The total loss can be written as

L=1Ly+ AL, (1)

where A is a weight balancing the two losses.

3.4 Siamese Feature Fusion

The purpose of encoding the flipped image is to provide a reference of the sym-
metric counterpart, Fy, which can be incorporated with the feature F' to facilitate
fracture detection. To provide a meaningful reference, F; needs to be spatially
aligned with F, so that features with the same index/coordinate in the two fea-
ture maps encode the same, but symmetric, anatomies of the patient. Previous
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methods have aligned the bilateral images I and I directly before encoding [24].
However, when large imaging angle and patient pose variations are present,
image alignment is prone to introducing artifacts, which can increase the dif-
ficulty of fracture detection. Therefore, instead of aligning the bilateral images
directly, we apply a spatial transformer layer on the feature map Fy to align it
with F, resulting in F } The aligned feature maps F' and F }( are fused to pro-
duce a bilaterally combined feature map, where every feature vector encodes the
visual patterns from symmetrical anatomies. This allows the decoder to directly
incorporate symmetry analysis into fracture detection.

We fuse the feature maps by concatenation. Implementation of the concate-
nation involves modification to the transition module between the dense blocks,
where multiple options exist, including concatenation before, after, or inside the
transition module (as shown in Fig.4). A transition module in DenseNet con-
sists of sequential BatchNorm, ReLLU, Conv and AvgPool operations. We perform
the concatenation inside the transition module after the ReLU layer, because it
causes minimal structural changes to the DenseNet model. Specifically, the only
layer affected in the DenseNet is the 1 x 1 Conv layer after concatenation, whose
input channels are doubled. All other layers remain the same, allowing us to
leverage the ImageNet pre-trained weights.

3.5 Siamese Contrastive Learning

While the above feature fusion provides a principled way to perform symmet-
ric analysis, further advancements can be made. We are motivated by a key
insight that image asymmetry can be caused by pathological abnormalities, i.e.
fracture, or spurious non-pathological factors, e.g. soft tissue shadows, bowel
gas patterns, clothing and foreign bodies. These non-pathological factors can be
visually confusing, causing false positives. We aim to optimize the deep features
to be more salient to the semantically pathological asymmetries, while miti-
gating the impact of distracting non-pathological asymmetries. To this end, our
model employs a new constrastive learning component to minimize the pixel-wise
distance between F' and FJQ in areas without fracture, making the features insen-
sitive to non-semantic asymmetries and thus less prone to false positives. On
the other hand, our contrastive learning component encourages larger distance
between F' and F J'c in areas with fractures, making the features more sensitive
to semantic asymmetries.

The above idea is implemented using pixel-wise margin loss between F' and
FJQ after a non-linear projection g:

1=y [l @) ot @I gl

max(0,m — lg(F(x)) — g(F}(@))|?) if @ € i
where & denotes the pixel coordinate, M denotes the mask indicating areas
affected by fractures, and m is a margin governing the dissimilarity of semantic
asymmetries. The mask M is calculated as M = M UT o M t, where T'o M} is
flipped and warped M.
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We employ a non-linear projection g to transform the feature before calcu-
lating the distance, which improves the quality of the learned feature F', F’ J’c In
our experiment, the non-linear projection consists of a linear layer followed by
BatchNorm and ReLLU. We posit that directly performing contrast learning on
features used for fracture detection could induce information loss and limit the
modeling power. For example, bone curvature asymmetries in X-ray images are
often non-pathological (e.g., caused by pose). However, they also provide visual
cues to detect certain types of fractures. Using the non-linear projection, such
useful information can be excluded from the contrastive learning so that they
are preserved in the feature for the downstream fracture detection task.

While the margin loss has been adopted for CAD in a previous method [22],
it was employed as a metric learning tool to learn a distance metric that directly
represent the image asymmetry. We stress that our targeted CAD is more com-
plex and clinically relevant, where image asymmetry can be semantically non-
pathological (caused by pose, imaging condition and etc.) but we are only inter-
ested in detecting the pathological (fracture-caused) asymmetries. We employ
the margin loss in our contrastive learning component to learn features with
optimal properties. For this purpose, extra measures are taken in our method,
including 1) conducting multi-task training with the margin loss calculated on a
middle level feature, and 2) employing a non-linear projection head to transform
the feature before calculating the margin loss.

4 Experiments

We demonstrate that our proposed AASN can significantly improve the per-
formance in pelvic fracture detection by exploiting the semantic symmetry of
anatomies. We focus on detecting fractures on the anterior pelvis including
pubis and ischium, an anatomically symmetric region with high rate of diag-
nostic errors and life-threatening complications in the clinical practice.

4.1 Experimental Settings

Dataset: We evaluate AASN on a real-world clinical dataset collected from the
Picture Archiving and Communication System (PACS) of a hospital’s trauma
emergency department. The images have a large variation in the imaging con-
ditions, including viewing angle, patient pose and foreign bodies shown in the
images. Fracture sites in these images are labeled by experienced clinicians, com-
bining multiple sources of information for confirmation, including clinical records
and computed tomography scans. The annotations are provided in the form of
points, due to inherent ambiguity in defining fracture as object. In total, there
are 2359 PXRs, and 759 of them have at least one anterior pelvic fracture
site. All our experiments are conducted with five-fold cross-validation with a
70%/10%/20% training, validation, and testing split, respectively.
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Fig. 5. Comparison of ROC curve and PR curve to the baselines. (a) is the ROC curve
and (b) is the PR curve. *Methods trained using image-level labels.

Implementation Details: The ROIs of the anterior pelvis are resized to
256 x 512 and stacked to a 3-channel pseudo-color image. We produce the super-
vision mask for the heatmap prediction branch by dilating the annotation points
to circle masks with a radius of 50 (about 2 cm). We implement all models using
PyTorch [27]. Severe over-fitting is observed when training the networks from
scratch, so we initialize them with ImageNet pre-trained weights. We emperi-
cally select DenseNet-121 as the backbone which yields the best performance
comparing to other ResNet and DenseNet settings. All models are optimized by
Adam [16] with a learning rate of 107°. For the pixel-wise contrastive loss, we
use the hyperparameter m = 0.5 as the margin, and A = 0.5 to balance the total
loss.

Evaluation Metrics: We first assess the model’s performance as an image-level
classifier, which is a widely adopted evaluation approach for CAD systems [20,
33,34]. The image-level abnormality reporting is of utmost importance in clinical
workflow because it directly affects the clinical decision. We take the maximum
value of the output heatmap as the classification output, and use Area under
ROC Curve (AUC) and Average Precision (AP) to evaluate the classification
performance.

We also evaluate the model’s fracture localization performance. Since our
model produces heatmaps as fracture localization, standard object detection
metrics do not apply. A modified free-response ROC (FROC) is reported to
measure localization performance. Specifically, unlike FROC, where object recall
is reported with the number of false positives per image, we report fracture recall
with the ratio of false positive area per image. A fracture is considered recalled
if the heatmap activation value at its location is above the threshold. Areas with
>2 cm away from all fracture annotation points are considered negative, on which
the false positive ratio is calculated. Areas within 2cm from any annotation
point is considered as ambiguous extents of the fracture. Since both positive and
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Table 1. Fracture classification and localization performance comparison with state-
of-the-art models. Classifier AUC and AP are reported for classification performance.
Fracture recalls at given false positive ratio are reported for localization performance.
*Methods trained using image-level labels. Localization performance are not evaluated
on these methods.

Method Classification Localization
AUC AP Recallpp—1% | Recallp p—10%
CheXNet* [28] 93.42% |86.33% |- -
Wang et al.* [34] | 95.43% |93.31% |- -
Wang et al.* [35] | 96.06% |93.90% |- -

Liu et al. [22] | 96.84% |94.20% | 2.78% 24.19%
DeepSymNet [1] |96.29% | 94.45% | 69.66% 90.07%
CBN [24] 97.00% | 94.92% | 73.93% 90.90%
AASN 97.71% 96.50% T77.87% 92.71%

negative responses in these ambiguous areas are clinically acceptable, they are
excluded from the modified FROC calculation.

Compared Methods: We first compare AASN with three state-of-the-art
CAD methods, i.e., ChexNet [28], Wang et al. [34], and Wang et al. [35], all using
image-level labels for training. They classify abnormality at image-level, and out-
put heatmaps for localization visualization. ChexNet [28] employs a global aver-
age pooling followed by a fully connected layer to produce the final prediction.
Wang et al. [34] uses Log-Sum-Exp (LSE) pooling. Wang et al. [35] employs a
two-stage classification mechanism, and reports the state-of-the-art performance
on hip/pelvic fracture classification.

We also compare with three methods modeling symmetry for CAD, i.e., Liu
et al. [22], CBN [24] and DeepSymNet [1]. All three methods perform alignment
on the flipped image. Liu et al. [22] performs metric learning to learn a distance
metric between symmetric body parts and uses it directly as an indicator of
abnormalities. DeepSymNet [1] and CBN [24] fuse the Siamese encodings for
abnormality detection, using subtraction and concatenation with gating, respec-
tively. All evaluated methods use DenseNet-121 backbone, trained using the
same experiment setting and tested with five-fold cross validation.

4.2 Classification Performance

Evaluation metrics of fracture classification performance are summarized in
Table1. ROC and PR curves are shown in Fig.5. The methods trained using
only image-level labels result in overall lower performance than methods trained
using fracture sites annotations. AASN outperforms all other methods, including
the ones using symmetry and fracture site annotations, with substantial margins
in all evaluation metrics. The improvements are also reflected in the ROC and
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PR curves Fig.5. Specifically, comparing to the 2nd highest values among all
methods, AASN improves AUC and AP by 0.71% and 1.58%, from 97.00% and
94.92% to 97.71% and 96.50%, respectively. We stress that in this high AUC and
AP range (i.e. above 95%), the improvements brought by AASN are significant.
For instance, when recall is increased from 95% to 96%, the number of missed
fractures are reduced by 20%.

Figure 6 provides visualizations of fracture heatmaps produced using different
methods. Non-displaced fractures that do not cause bone structures to be largely
disrupted are visually ambiguous and often missed by the vanilla DenseNet-121
without considering symmetry. Comparison between the fracture site and its
symmetric bone reveals that the suspicious pattern only occurs on one side and
is likely to be fracture. This intuition is in line with the results, i.e., by incor-
porating symmetric features, some of the ambiguous fractures can be detected.
By employing the feature comparison module, AASN is able to detect more
fracture, hypothetically owing to the better feature characteristics learned via
feature comparison.

4.3 Localization Performance

We also evaluate AASN’s fracture localization performance. The three symme-
try modeling baselines and our four ablation study methods are also evaluated
for comparison. As summarized in Table1l, AASN achieves the best fracture
site recall among all evaluated methods, resulting in Recallpp_q9 = 77.87% and
Recallpp_199% = 92.71%, respectively. It outperforms baseline methods by sub-
stantial margins.

Among the baseline methods, directly using learned distance metric as an
indicator of fracture (Liu et al. [22]) results in the lowest localization per-
formance, because the image asymmetry indicated by distance metric can be
caused by other non-pathological factors than fractures. The comparison justifies
the importance of our proposed contrastive learning component, which exploits
mmage asymmetry to optimize deep feature for downstream fracture detection,
instead of directly using it as a fracture indicator. CBN [24] achieves the best
performance among the three baselines, hypothetically owing to the Siamese fea-
ture fusion. With our feature alignment and contrastive learning components,
A ASN significantly improves fracture site Recallpp—19, over CBN [24] by 3.94%.

4.4 Ablation Study

We conduct ablation study of AASN to analyze the contributions of its novel
components, summarized in Table 2. The components include: 1) Symmetric fea-
ture fusion (referred to as FF'), 2) Feature alignment (referred to as FA) and
3) Feature contrastive learning (referred to as CL). We add these components
individually to the Vanilla DenseNet-121 to analyze their effects. We also ana-
lyze the effect of the non-linear projection head g by evaluating a variant of
constrastive learning without it.



Anatomy-Aware Siamese Network for Pelvic Fracture Detection 251

Fig. 6. Prediction results for different models. (a) pubis ROI in the PXR. Fracture
probability heatmaps produced by (b) Vanilla DenseNet-121 [14], (¢) CBN [24] and (d)
AASN. (e) the distance map between siamese feature in AASN. The last row shows an
example of failed cases.

Symmetric Feature Fusion: The effect of feature fusion is reflected in the com-
parisons: baseline vs. FF and baseline vs. FF-FA. Both FF and FF-FA employ
symmetric feature fusion and are able to outperform Vanilla, although by a dif-
ferent margin due to the different alignment methods used. In particular, FF-FA
significantly improves the Recallpp_;9, by 5.89%. These improvements are hypo-
thetically owing to the incorporation of the visual patterns from symmetric body
parts, which provides reference for differentiating visually ambiguous fractures.

Feature Alignment: The effect of feature warping and alignment is reflected
in the comparisons: FF vs. FF-FA and FF-CL vs. FF-FA-CL. The ablation
study shows that, by using the feature warping and alignment, the perfor-
mances of both FF and FF-CL are both significantly improved. In particular,
the Recallpp_;y are improved by 3.46% and 1.60% in FF-FA and FF-FA-CL,
respectively. It’s also demonstrated that the contributions of feature warping
and alignment are consistent with and without Siamese feature comparison. We
posit that the performance improvements are owing to the preservation of the
original image pattern by performing warping and alignment at the feature level.

Contrastive Learning: The effect of Siamese feature comparison is reflected
in the comparisons: FF vs. FF-CL and FF-FA vs. FF-FA-CL. The ablation
study shows measurable contribution of the Siamese feature comparison mod-
ule. By using Siamese feature fusion, FF' and FF-FA already show significant
improvements comparing to the baseline. By adding Siamese feature compari-
son to FF and FF-FA, Recallpp_,9 are improved by 3.05% and 1.19%, respec-
tively. The improvements are in line with our motivation and hypothesis that by
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Table 2. Ablation study of AASN. The baseline model is vanilla DenseNet121 trained
without the symmetry modeling components. “FF” indicates using feature fusion. “FA”
indicates using feature alignment (otherwise image alignment is used). “CL” indicates
using contrastive learning. “no. proj.” indicates that the contrastive learning is per-
formed without the non-linear projection head.

FF | FA | CL AUC AP Recallppzl% Recallpp:m%
96.52% | 94.52% | 70.79% 89.46%
v 96.93% | 94.77% | 73.22% 89.93%
(4+0.41%) | (+0.25%) | (+2.43%) (4+0.47%)
R 97.20% | 95.68% | 76.68% 91.51%
(4+0.68%) | (+1.16%) | (+5.89%) (4+2.05%)
v v 97.46% |95.36% | 76.27% 91.09%
(4+0.94%) | (+0.84%) | (+5.48%) (+1.63%)
v vy ' 97.31% |96.15% | 77.26% 92.70%
nOPTOI- | (1.0.79%) | (+1.63%) | (+6.47%) (+3.24%)
VRV, 97.71% | 96.50% | 77.87% 92.71%
(+1.19%) | (+1.98%) | (+7.08%) (+3.25%)

maximizing/minimizing Siamese feature distances on areas with/without frac-
tures, the network can learn features that are more sensitive to fractures and less
sensitive to other distracting factors. Comparing to the AASN directly perform-
ing constrastive learning on the symmetric feature (no. proj.), employing the
non-linear projection head leads further improves the Recallpp_;o by 0.61%.

5 Conclusion

In this paper, we systematically and thoroughly study exploiting the anatomical
symmetry prior knowledge to facilitate CAD, in particular anterior pelvic frac-
ture detection in PXR. We introduce a deep neural network technique, termed
Anatomical-Aware Siamese Network, to incorporate semantic symmetry anal-
ysis into abnormality (i.e. fracture) detection. Through comprehensive abla-
tion study, we demonstrate that: 1) Employing symmetric feature fusion can
effectively exploit symmetrical information to facilitate fracture detection. 2)
Performing spatial alignment at the feature level for symmetric feature fusion
leads to substantial performance gain. 3) Using contrastive learning, the Siamese
encoder is able to learn more sensible embedding, leading to further performance
improvement. By comparing with the state-of-the-art methods, including latest
ones modeling symmetry, we demonstrate the AASN is by far the most effective
method exploiting symmetry and reports substantially improved performances
on both classification and localization tasks.
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