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a b s t r a c t 

Chest X-rays (CXRs) are a crucial and extraordinarily common diagnostic tool, leading to heavy research 

for computer-aided diagnosis (CAD) solutions. However, both high classification accuracy and meaningful 

model predictions that respect and incorporate clinical taxonomies are crucial for CAD usability. To this 

end, we present a deep hierarchical multi-label classification (HMLC) approach for CXR CAD. Different 

than other hierarchical systems, we show that first training the network to model conditional probability 

directly and then refining it with unconditional probabilities is key in boosting performance. In addi- 

tion, we also formulate a numerically stable cross-entropy loss function for unconditional probabilities 

that provides concrete performance improvements. Finally, we demonstrate that HMLC can be an effec- 

tive means to manage missing or incomplete labels. To the best of our knowledge, we are the first to 

apply HMLC to medical imaging CAD. We extensively evaluate our approach on detecting abnormality 

labels from the CXR arm of the Prostate, Lung, Colorectal and Ovarian (PLCO) dataset, which comprises 

over 198,0 0 0 manually annotated CXRs. When using complete labels, we report a mean area under the 

curve (AUC) of 0.887, the highest yet reported for this dataset. These results are supported by ancillary 

experiments on the PadChest dataset, where we also report significant improvements, 1.2% and 4.1% in 

AUC and average precision, respectively over strong “flat” classifiers. Finally, we demonstrate that our 

HMLC approach can much better handle incompletely labelled data. These performance improvements, 

combined with the inherent usefulness of taxonomic predictions, indicate that our approach represents a 

useful step forward for CXR CAD. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Chest X-rays (CXRs) account for a large proportion of ordered

mage studies, e.g., in the US it accounted for almost half of or-

ered studies in 2006 ( Mettler et al., 2009 ). Commensurate with

his importance, CXR computer-aided diagnosis (CAD) has received

onsiderable research attention, both prior to the popularity of

eep learning ( Jaeger et al., 2013 ), and afterwards ( Wang et al.,

017; Yao et al., 2017; Gündel et al., 2019a; Irvin et al., 2019; Bustos

t al., 2019 ). These effort s have met success and typically approach

he problem as a standard multi-label classification scenario, which

ttempts to make a set of individual binary predictions for each

isease pattern under consideration. Yet, pushing raw performance

urther will likely require models that depart from standard multi-
� Work performed at NVIDIA. 
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abel classifiers. For instance, despite their importance to clinical

nderstanding and interpretation ( Stevens et al., 2007; Humphreys

nd Lindberg, 1993; Stearns et al., 2001 ), taxonomies of disease

atterns are not typically incorporated into CXR CAD systems, or

or other medical CAD domains for that matter. This observation

otivates our work, which uses hierarchical multi-label classification

HMLC) to both push raw area under the curve (AUC) performance

urther and also to provide more meaningful predictions that lever-

ge clinical taxonomies. 

Organizing diagnoses or observations into ontolo- 

ies and/or taxonomies is crucial within radiology, e.g.,

adLex ( Langlotz, 2006 ), with CXR interpretation being no

xception ( Folio, 2012; Demner-Fushman et al., 2015; Dimitrovski

t al., 2011 ). This importance should also be reflected within CAD

ystems. For instance, when uncertain about fine-level predictions,

.g., nodules vs. masses , a CAD system should still be able to pro-

ide meaningful parent-level predictions, e.g., pulmonary nodules

nd masses . This parent prediction may be all the clinician is in-

erested in anyway. Another important benefit is that observations

https://doi.org/10.1016/j.media.2020.101811
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101811&domain=pdf
mailto:hchen135@jhu.edu
mailto:adam.p.harrison@gmail.com
https://doi.org/10.1016/j.media.2020.101811
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are conditioned upon their parent being true, allowing fine-level

predictors to focus solely on discriminating between siblings rather

than on having to discriminate across all possible conditions. This

can help improve classification performance ( Bi and Kwok, 2015 ). 

Elegantly addressing the problem of incompletely labelled data

is another benefit of incorporating taxonomy. To see this, note that

many CXR datasets are collected using natural language processing

(NLP) approaches applied to hospital picture archiving and com-

munication systems (PACSs) ( Wang et al., 2017; Irvin et al., 2019 ).

This is a trend that will surely increase given that PACSs remain

the most viable source of large-scale medical data ( Kohli et al.,

2017; Harvey and Glocker, 2019 ). In such cases, it may not always

be possible to extract fine-grained labels with confidence. For in-

stance, imaging conditions may have only allowed a radiologist to

report “opacity”, instead of a more specific observation of “infiltra-

tion” vs. “atelectasis”. Added to this inherent uncertainty is the fact

that NLP approaches for CXR label extraction themselves can suf-

fer from considerable levels of error and uncertainty ( Irvin et al.,

2019; Erdi et al., 2019 ). As a result, it is likely that CAD systems

will increasingly be faced with incompletely labelled data, where

data instances may be missing fine-grained labels, but still retain

labels higher up in the clinical taxonomy. An HMLC approach can

naturally handle such incompletely labelled data. 

For these reasons, we present a deep HMLC approach for

CXR CAD. We extensively evaluate our HMLC approach on the

CXR arm of the Prostate, Lung, Colorectal and Ovarian (PLCO)

dataset ( Gohagan et al., 20 0 0 ) with supporting experiments on the

PadChest dataset ( Bustos et al., 2019 ). Experiments demonstrate

that our HMLC approach can push raw performance higher com-

pared to both leading “flat” classification baselines and other HMLC

alternatives. We also demonstrate that our HMLC approach can ro-

bustly handle extremely large proportions of incompletely labelled

data with much less performance loss than alternatives. To the best

of our knowledge, we are the first to outline an HMLC CAD sys-

tem for medical imaging and the first to characterize performance

when faced with incompletely labelled data. 

1.1. Related work 

CXR classification Because more than one abnormality can be

observed on a CXR at the same time, a CAD CXR system must

operate in a multi-label setting. This is in contrast to multi-class

approaches, which typically attempt to make a single n -ary predic-

tion per image. Truly large-scale CXR classification started with the

CXR14 dataset and the corresponding model ( Wang et al., 2017 ),

with many subsequents improvements both in modeling and in

dataset collection ( Irvin et al., 2019; Bustos et al., 2019; Johnson

et al., 2019 ). These improvements include incorporating ensem-

bling ( Islam et al., 2017 ), attention mechanisms ( Guan et al., 2018;

Wang and Xia, 2018; Liu et al., 2019 ), and localizations ( Yan et al.,

2018; Li et al., 2018; Liu et al., 2019; Gündel et al., 2019a; Cai et al.,

2018 ). Similar to ( Gündel et al. (2019a) ), we also train and test on

the PLCO dataset. However, Gündel et al. (2019a) boosted their per-

formance by incorporating the CXR14 dataset ( Wang et al., 2017 )

and a multi-task framework that also predicted the rough locations

and the lung and heart segmentations. While the contributions of

these cues, when available, are important to characterize and in-

corporate, our HMLC approach can achieve higher AUCs 1 without

extra data or auxiliary cues. 

A commonality between these prior approaches is that they

typically treat each label as an independent prediction, which is

commonly referred to as binary relevance (BR) learning within

the multi-label classification field ( Zhang and Zhou, 2014 ). How-
1 With the caveat of using different data splits, since there is no official split. 

a  

o  

p  
ver, prior work has well articulated the limitations of BR learn-

ng ( Dembczy ́nski et al., 2012 ). A notable exception to this trend is

ao et al. (2017) , which modeled correlations between labels us-

ng a recurrent neural network. Our HMLC system takes a different

pproach by incorporating top-down knowledge to model the con-

itional dependence of children labels upon their parents. In this

ay, we make predictions conditionally independent rather than

lobally independent, allowing the model to focus on discriminat-

ng between siblings rather than across all disease patterns. 

Hierarchical classification Given its potential to improve perfor-

ance, incorporating taxonomy through hierarchical classification

as been well-studied. Prior to the emergence of deep learning,

eminal approaches used hierarchical and multi-label generaliza-

ions of classic algorithms ( McCallum et al., 1998; Cesa-bianchi

t al., 2005; Cai, 2007; Vens et al., 2008 ). With the advent of

eep learning, a more recent focus has been on adapting deep net-

orks, typically convolutional neural networks (CNNs), for hierar-

hical classification ( Redmon and Farhadi, 2017; Roy et al., 2020;

an et al., 2015; Guo et al., 2018; Kowsari et al., 2017 ). Interest-

ngly, Cesa-bianchi et al. (2005) use an approach similar to popu-

ar those seen in more recent deep hierarchical multi-class classi-

cation of natural images ( Redmon and Farhadi, 2017; Roy et al.,

020; Yan et al., 2015 ), i.e., train classifiers to predict conditional

robabilities at each node. Our approach is similar to these more

ecent deep approaches, except that we focus on multi-label classi-

cation and we also formulate a numerically stable unconditional

robability fine-tuning step. 

Other deep approaches used complicated combinations of CNNs

nd recurrent neural networks (RNNs) ( Guo et al., 2018; Kowsari

t al., 2017 ), but for our CXR application we show that a much

impler approach that uses a shared trunk network for each of the

utput nodes can, on its own, provide important performance im-

rovements over “flat” classifiers. 

Within medical imaging, there is work on HMLC medi-

al image retrieval using either nearest-neighbor or multi-layer

erceptrons ( Pourghassem and Ghassemian, 2008 ) or decision

rees ( Dimitrovski et al., 2011 ). However, hierarchical classifiers

ave not received much attention for medical imaging CAD and

eep HMLC approaches have not been explored at all. Finally, we

ote that the process of producing a set of binary HMLC labels,

iven a set of pseudo-probability predictions, is a surprisingly rich

opic ( Bi and Kwok, 2015 ), but here we focus on producing said

redictions. 

Incompletely labelled data As mentioned, another motivating fac-

or for HMLC is its ability to handle incompletely or partially la-

elled data. Within the computer vision and text mining literature,

here is a rich body of work on handling partial labels ( Bucak

t al., 2011; Elkan and Noto, 2008; Kong et al., 2014; Liu et al.,

003; Qi et al., 2011; Yu et al., 2014; Zhao and Guo, 2015; Yang,

iang and Zhou, 2013 ). When missing labels are positive exam-

les, this problem has also been called positive and unlabelled (PU)

earning. Seminal PU works focus on multi-class learning ( Elkan

nd Noto, 2008; Liu et al., 2003 ). There are also effort s f or multi-

abel PU learning ( Bucak et al., 2011; Kong et al., 2014; Qi et al.,

011; Yu et al., 2014; Zhao and Guo, 2015; Yang, Jiang and Zhou,

013 ), which attempt to exploit label dependencies and correla-

ions to overcome missing annotations. However, many of these

pproaches do not scale well with large-scale data ( Kong et al.,

014 ). 

Yu et al. (2014) and Kong et al. (2014) provide two exceptions

o this, tackling large-scale numbers of labels and data instances,

espectively. In our case, we are only interested in the latter, as

he number of observable CXR disease patterns remains manage-

ble. We are able to take advantage of a hierarchical clinical tax-

nomy to model label dependencies, allowing us to avoid com-

lex approaches to learn these dependencies, such as the stacking
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ethods used by Kong et al. (2014) . In this way, our approach is

imilar to that of Cesa-bianchi et al. (2005) , who also use a hierar-

hy to handle PU data through an incremental linear classification

cheme. However, our approach uses deep CNNs and we are the

rst to show how HMLC can help address the PU problem for CAD

nd the first to characterize performance of CXR classifiers under

his scenario. 

.2. Contributions 

Based on the above, the contributions of our work can be sum-

arized as follows: 

• Like other deep hierarchical multi-class classifiers, we train a

classifier to predict conditional probabilities. However, we op-

erate in the multi-label space and we also demonstrate that a

second fine-tuning stage, trained using unconditional probabil-

ities, can boost performance for CXR classification even further.
• To handle the unstable multiplication of prediction outputs

seen in unconditional probabilities we introduce and formulate

a numerically stable and principled loss function. 
• Using our two-stage approach, we are the first to apply hi-

erarchical multi-label classification (HMLC) to CXR CAD. Our

straightforward, but effective, HMLC approach results in the

highest mean AUC value yet reported for the PLCO dataset. 
• In addition, we demonstrate how HMLC can serve as an effec-

tive means to handle incompletely labelled data. We are the

first to characterize CXR classification performance under this

scenario, and experiments demonstrate how HMLC can garner

even greater boosts in classification performance. 

Finally, we note that portions of this work were previously pub-

ished as a conference proceeding ( Chen et al., 2019 ). This work

dds several contributions: (1) we significantly expand upon the

iterature review; (2) we include the derivation of the numerically

table unconditional probability loss within the main body and

ave made its derivation clearer; (3) we include additional results

ith the PadChest ( Bustos et al., 2019 ) dataset to further validate

ur approach; and (4) we add the motivation, discussion, and ex-

eriments on incompletely labelled data. 

. Materials and methods 

We introduce a two-stage method for CXR HMLC. We first out-

ine the datasets and taxonomy we use in Section 2.1 and then

verview the general concept of HMLC in Section 2.2 . This is fol-

owed by Sections 2.3 and 2.4 , which detail our two training stages

hat use conditional probability and a numerically stable uncondi-

ional probability formulation, respectively. 

.1. Datasets and taxonomy 

The first step in creating an HMLC system is to create the label

axonomy. In this work, our main results focus on the labels and

ata found within the CXR arm of the PLCO dataset ( Gohagan et al.,

0 0 0 ), a large-scale lung cancer screening trial that collected

98,0 0 0 CXRs with image-based annotations of abnormalities ob-

ained from multiple US clinical centers. While other large-scale

atasets ( Wang et al., 2017; Bustos et al., 2019; Irvin et al., 2019;

ohnson et al., 2019 ) are extraordinarily valuable , their labels are

enerated by using NLP to extract mentioned disease patterns from

adiological reports found in hospital PACSs. While medical NLP

as made great strides in recent years, it still remains an active

eld of research, e.g., NegBio still reports limitations with uncer-

ainty detection, double-negation, and missed positive findings for

ertain CXR terms ( Peng et al., 2018 ). However, irrespective of

he NLP’s level of accuracy, there are more inherent limitations
o using text-mined labels. Namely, examining a text report is no

ubstitute for visually examining the actual radiological scan, as

he text of an individual report is not a complete description of

he CXR study in question. Thus, terms may not be mentioned,

.g., “no change”, even though they are indeed visually apparent.

dditionally, a radiologist will consider lab tests, prior radiologi-

al studies, and the patient’s records when writing up a report.

hus, mentioned terms, and their meaning, may well be influenced

y factors that are not visually apparent. Compounding this, text

hich is unambiguous given the patient’s records and radiologi-

al studies may be highly ambiguous when only considering text

lone, e.g., whether a pneumothorax is untreated or not ( Oakden-

ayner, 2019 ). Indeed, the authors of the PadChest dataset bring

p some of these caveats themselves, which are relevant even for

he 27% of their radiological reports that are text-mined by hand,

hich presumably have no NLP errors ( Bustos et al., 2019 ). An in-

ependent study of CXR14 ( Wang et al., 2017 ) concludes that its

abels have low positive predictive value and argues that visual

nspection is necessary to create radiological datasets ( Oakden-

ayner, 2019 ). Consequently, PLCO is unique in that it is the only

arge-scale CXR dataset with labels generated via visual observa-

ion from radiologists. Although the PLCO data is older than alter-

atives ( Wang et al., 2017; Bustos et al., 2019; Irvin et al., 2019;

ohnson et al., 2019 ), it has greater label reliability. 

Radiologists in the PLCO trial labelled 15 disease patterns,

hich we call “leaf labels” in our taxonomy. Because of low

revalance, we merged “left hilar abnormality” and “right hilar ab-

ormality” into “hilar abnormality”, resulting in 14 labels. From the

eaf nodes, we constructed the label taxonomy shown in Fig. 1 .

he hierarchical structure follows the PLCO trial’s division of “sus-

icious for cancer” disease patterns vs. not, and is further parti-

ioned using common groupings ( Folio, 2012 ), totalling 19 leaf and

on-leaf labels. While care was taken in constructing the taxon-

my and we aimed for clinical usefulness, we make no specific

laim as such. We instead use the taxonomy to explore the ben-

fits of HMLC, stressing that our approach is general enough to

ncorporate any appropriate taxonomy. Fig. 2 visually depicts ex-

mples from our chosen CXR taxonomy. 

As supporting validation to our main PLCO experiments, we

lso validate on the PadChest dataset ( Bustos et al., 2019 ), which

ontains 160,845 CXRs whose labels are drawn from either man-

al or automatic extraction from radiological text reports . We fo-

us on labels categorized as “radiological findings”, which are

ore likely to correspond to actual disease patterns found on the

XRs ( Bustos et al., 2019 ). Any CXR with a solitary “Unchanged”

abel is removed, resulting in 121,242 samples. Uniquely, PadChest

ffers a complete hierarchical structure for all labels. We remove

abels with less than 100 manually labelled samples and only re-

ain labels that align with our PLCO taxonomy. This both ensures

e have enough statistical power for evaluation and that we are

etaining PLCO-like terms that we can confidently treat as clini-

ally significant. As a result, total 30 out of 191 labels are selected,

nd our supplementary includes more details of the included and

xcluded labels. The resulting taxonomy is shown in Fig. 3 . Unlike

LCO, certain parent labels can be positive with no positive chil-

ren labels, e.g., “Aortic Elongation”. 

.2. Hierarchical multi-label classification 

With a taxonomy established, a hierarchical approach to classi-

cation must be established. Because this is a multi-label setting,

ll or none of the labels in Fig. 1 can be positive. The only restric-

ion is that if a child is positive, its parent must be too. Siblings

re not mutually exclusive. For PLCO, we assume that each image

s associated with a set of ground-truth leaf labels and their an-

ecedents, i.e., there are no incomplete paths. However, for PadCh-
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Fig. 1. Constructed label hierarchy from the PLCO dataset. 

Fig. 2. Example PLCO CXRs drawn from three levels of our taxonomy. On the left, at the higest level of taxonomy, i.e., “Abnormality”, disease patterns may manifest 

as a variety of visual features within the lung parenchyma, lung pleura, or the surrounding organs/tissues. As one progresses down the taxonomy, i.e., to “Opacity”, the 

discriminating task is narrowed into identifying the “cloudy” patterns seen in both “Infiltration” and “Major Atelectasis.”
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est a ground-truth path may terminate before a leaf node. A train-

ing set, may have missing labels. 

We use a DenseNet-121 ( Huang et al., 2017 ) model as a back-

bone. If we use k to denote the total number of leaf and non-leaf

labels, we connect k fully connected layers to the backbone’s last

feature layer to extract k scalar outputs. Each output is assumed

to represent the conditional probability (or its logit) given that its

parent is true. Thus, once the model is successfully trained, uncon-

ditional probabilities can be calculated from the output using the

chain rule, e.g., from the PLCO taxonomy the unconditional proba-

bility of scarring can be calculated as 

P ( Scar. ) = P ( Abn. ) P ( Pulm. | Abn. ) P ( Scar. | Pulm. ) , (1)

where we use abbreviations for the sake of typesetting. In this way,

the predicted unconditional probability of a parent label is guaran-

teed to be greater than or equal to its children labels. We refer to

the conditional probability in a label hierarchy as hierarchical label

conditional probability (HLCP), and the unconditional probability

calculated following the chain rule as hierarchical label uncondi-

tional probability (HLUP). The network outputs can be trained ei-

ther conditionally or unconditionally, which we outline in the next

two sections. 

2.3. Training with conditional probability 

Similar to prior work ( Redmon and Farhadi, 2017; Roy et al.,

2020; Yan et al., 2015 ), in the first stage of the proposed training

scheme, each classifier is only trained on data conditioned upon
ts parent label being positive. Thus, training directly models the

onditional probability. The shared part of the classifiers, i.e., fea-

ure layers from the backbone network, is trained jointly by all the

asks. Specifically, for each image the losses are only calculated on

abels whose parent label is also positive. For example, and once

gain using the PLCO taxonomy, when an image with positive Scar-

ing and no other positive labels is fed into training, only the losses

f Abnormality and the children labels of Pulmonary Abnormality

nd Abnormality are calculated and used for training. 

Fig. 4 (a) illustrates this training regimen, which we denote

LCP training. In this work, we use cross entropy (CE) loss to train

he conditional probabilities, which can be written as 

 HLCP = 

∑ 

m ∈ M 

CE 
(
z m 

, ̂  z m 

)
∗ 1 { z a (m ) =1 } , (2)

here M denotes the set of all disease patterns, and m and

 ( m ) denote a disease pattern and its ancestor, respectively. Here

E ( · , · ) denotes the cross entropy loss, and z m 

∈ {0, 1} de-

otes the ground truth label of m , with ˆ z m 

corresponding to the

etwork’s sigmoid output. 

Training with conditional probability is a very effective initial-

zation step, as it concentrates the modeling power solely on dis-

riminating siblings under the same parent label, rather than hav-

ng to discriminate across all labels, which eases convergence and

educes confounding factors. It also alleviates the problem of low

abel prevalence because fewer negative samples are used for each

abel. 
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Fig. 3. Constructed label hierarchy from the PadChest dataset. 

(a) (b)

Fig. 4. The HLCP and HLUP losses are depicted in (a) and (b), respectively, where 

black and white points are positive and negative labels, respectively. Blue areas in- 

dicate the activation area in the loss functions. 
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.4. Fine tuning with unconditional probability 

In the second stage, we finetune the model using an HLUP CE

oss. This stage aims at improving the accuracy of unconditional

robability predictions, which is what is actually used during in-

erence and is thus critical to classification performance. Another

mportant advantage is that the final linear layer sees more nega-

ive samples. Predicted unconditional probabilities for label m , de-

oted ˆ p m 

, are calculated using the chain rule: 

ˆ p m 

= 

∏ 

m 

′ ∈ A (m ) 

ˆ z m 

′ , (3) 

here A ( m ) is the union of label m and its antecedents. When

raining using unconditional probabilities, the loss is calculated on

very classifier output for every data instance. Thus, the HLUP CE

oss for each image is simply 

 HLUP = 

∑ 

m ∈ M 

CE 
(
z m 

, ˆ p m 

)
. (4) 

ig. 4 (b) visually depicts this loss. 

A naive way to calculate (4) would be a direct calculation. How-

ver, such an approach introduces instability during optimization,

s the training would have to minimize the product of network

utputs. In addition, the product of probability values within [0,1]

an cause arithmetic underflow. For this reason, we derive a nu-

erically stable formulation below. 
Denoting the network’s output logits as ˆ y (. ) , the predicted un-

onditional probability of label m can be written as: 

ˆ p m 

= 

∏ 

m 

′ 

1 

1 + exp (−y m 

′ ) 
, (5) 

here we use m 

′ to denote m 

′ ∈ A ( m ) for notational simplicity. 

The HLUP CE loss is calculated as: 

 HLUP = −z m 

log ( ̂  p m 

) − (1 − z m 

) log (1 − ˆ p m 

) , (6)

= −z m 

log 

( ∏ 

m 

′ 

1 

1 + exp (−y m 

′ ) 

) 

−(1 − z m 

) log 

( 

1 −
( ∏ 

m 

′ 

1 

1 + exp (−y m 

′ ) 

) ) 

, (7) 

here z m 

is the ground truth label of m . 

The formulation in (7) closely resembles several cross-entropy

oss terms combined together. To see this, we can break up the

econd term in (7) to produce the following formulation: 

 HLUP = − z m 

log 

( ∏ 

m 

′ 

1 

1 + exp (−y m 

′ ) 

) 

− (1 − z m 

) log 

( ∏ 

m 

′ 

(
1 − 1 

1 + exp (−y m 

′ ) 

)) 

+ γ , (8) 

here γ is a scalar quantity that must be formulated. The log

erms above can then be decomposed as 

 HLUP = 

∑ 

m 

′ 

(
−z m 

log 

(
1 

1 + exp (−y m 

′ ) 

)

−(1 − z m 

) log 

(
1 − 1 

1 + exp (−y m 

′ ) 

))
+ γ , (9) 

= 

∑ 

m 

′ 
� m 

′ + γ , (10) 

here � m 

are individual cross entropy terms, using z m 

and y m 

′ are

he ground truth and logit input, respectively. Note that (10) allows

s to take advantage of numerically stable CE implementations to
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calculate 
∑ 

m 

′ � m 

′ . However to satisfy (10) , we will need γ to sat-

isfy: 

γ = (1 − z m 

) log 

( ∏ 

m 

′ 

(
1 − 1 

1 + exp (−y m 

′ ) 

)) 

−(1 − z m 

) log 

( 

1 −
( ∏ 

m 

′ 

1 

1 + exp (−y m 

′ ) 

) ) 

, (11)

= (1 − z m 

) log 

( ∏ 

m 

′ exp (−y m 

′ ) ∏ 

m 

′ (1 + exp (−y m 

′ )) 

)

−(1 − z m 

) log 

(∏ 

m 

′ (1 + exp (−y m 

′ )) − 1 ∏ 

m 

′ (1 + exp (−y m 

′ )) 

)
, (12)

= (1 − z m 

) log 

(
exp ( 

∑ 

m 

′ −y m 

′ ) ∏ 

m 

′ (1 + exp (−y m 

′ )) − 1 

)
, (13)

= (1 − z m 

) 

( ∑ 

m 

′ 
−y m 

′ − log 

( ∏ 

m 

′ 
(1 + exp (−y m 

′ )) − 1 

) ) 

. (14)

If the product within the log-term of (14) is expanded, with 1

subtracted, it will result in 

γ = (1 − z m 

) 

( ∑ 

m 

′ 
−y m 

′ − log 

( ∑ 

S∈P(A (m )) \{∅} 
exp 

( ∑ 

j∈ S 
−y j 

) ) ) 

, 

(15)

where S enumerates all possible subsets of the powerset of A ( m ),

excluding the empty set. For example if there were two logits, y 1 
and y 2 , the summation inside the log would be: 

exp (−y 1 ) + exp (−y 2 ) + exp (−y 1 − y 2 ) . (16)

The expression in (15) can be written as 

γ = (1 − z m 

) 

( ∑ 

m 

′ 
−y m 

′ − LSE 

( { ∑ 

j∈ S 
−y j ∀ S ∈ P(A (m )) \ {∅} 

} ) ) 

, 

(17)

where LSE is the LogSumExp function. Numerically stable imple-

mentations of the LogSumExp, and its gradient, are well known.

By substituting (17) into (10) , a numerically stable version of the

HLUP CE loss can be calculated. 

Enumerating the powerset produces an obvious combinatorial

explosion. However, for smaller-scale hierarchies, like that in Fig. 1 ,

it remains tractable. For larger hierarchies, an O (| A ( m )|) approxima-

tion would simply interpret the LogSumExp as a smooth approxi-

mation to the maximum function, which we provide here for com-

pleteness: 

γ ≈ (1 − z m 

) 

( ∑ 

m 

′ 
−y m 

′ − max 

( { ∑ 

j∈ S 
−y j ∀ S ∈ P(A (m )) \ {∅} 

} ) ) 

, 

(18)

= 

{
(1 − z m 

) 
(∑ 

m 

′ −y m 

′ − ∑ 

j: y j < 0 
−y j 

)
, if ∃ y m 

′ < 0 

(1 − z m 

) ( 
∑ 

m 

′ −y m 

′ − max ({−y m 

′ } ) ) , otherwise 
. (19)

3. Experimental 

We perform two types of experiments to validate our HMLC ap-

proach. The first uses a standard completely labelled setup, reveal-

ing how our use of taxonomic classification can help produce bet-

ter raw classification performance than typical “flat” classifiers. The

second uses incompletely labelled data under controlled scenarios
o show how our HMLC approach can naturally handle such data,

chieving even higher boosts in relative performance. 

.1. Complete labels 

Experimental setup We test our HMLC approach on both the

LCO ( Gohagan et al., 20 0 0 ) and PadChest ( Bustos et al., 2019 )

atasets, using the taxonomies of Figs. 1 and 3 , respectively. Our

mphasis is on PLCO due to its more reliable labels, but evalua-

ions on PadChest provide important experimental support, espe-

ially given its larger taxonomy. Following accepted practices in

arge-scale CXR classification ( Wang et al., 2017; Irvin et al., 2019;

ustos et al., 2019 ), we split the data into single training, valida-

ion, and test sets, corresponding to 70%, 10%, and 20% of the data,

espectively. Data is split at the patient level, and care was taken

o balance the prevalence of each disease pattern as much as pos-

ible. As mentioned above, our HMLC approach uses a trunk net-

ork, with a final fully-connected layer outputting logit values for

ach of the nodes of our chosen taxonomy. Our chosen network

s DenseNet-121 ( Huang et al., 2017 ), implemented using Tensor-

low. We first train with the HLCP CE loss of (2) fine-tuning from

 model pretrained from ImageNet ( Deng et al., 2009 ). We refer to

his model simply as HLCP . To produce our final model, we then

netune the HLCP model using the HLUP CE loss of (4) . We denote

his final model as HLUP-finetune . 

Comparisons In addition to comparing against HLCP, we also

ompare against three other baseline models, all using the same

runk network fine-tuned from ImageNet pretrained weights. The

rst, denoted BR-leaf , is trained using CE loss on the 14 fine-

rained labels. This measures performance using a standard multi-

abel BR approach. The second, denoted BR-all is very similar, but

rains a CE loss on all labels independently, including non-leaf

nes. In this way, BR-all measures performance when one wishes

o naively output non-leaf abnormality nodes, without considering

abel taxonomy. Finally, we also test against a model trained using

he HLUP CE loss directly from ImageNet weights, rather than fine-

uning from the HLCP model. As such, this baseline, denoted HLUP ,

elps reveal the impact of using a two-stage approach vs. simply

raining an HLUP classifier in one step. For all tested models, ex-

ensive hyper-parameter searches were performed on the NVIDIA

luster to optimize mean validation leaf-label AUCs. 

For comparisons to external models, we also compare to a re-

ent DenseNet121 BR approach Gündel et al. (2019a) trained on the

LCO data. But, we stress that direct comparisons of numbers are

mpossible, as Gündel et al. (2019a) used different data splits and

nly evaluated on 12 fine-grained labels. In the interest of fairness

e compare against both (a) their best reported numbers when

nly training a classifier on CXR disease patterns and (b) their best

eported numbers overall, in which the authors incorporated seg-

entation and localization cues. For (a), we use numbers reported

n an earlier work ( Gündel et al., 2019b ), which were higher. Un-

ortunately, both sets of their reported numbers are based on train-

ng data that also included the ChestXRay14 dataset ( Wang and

ia, 2018 ), providing an additional confounding factor that ham-

ers any direct comparison. 

Finally, we also run experiments to compare our numerically

table implementation of HLUP CE loss in (8) to: (a) the naive

pproach of directly optimizing (3) ; and (b) to a recent rescal-

ng approximation, originally introduced for the multiplication of

ndependent, rather than conditional probabilities, seen in multi-

nstance learning ( Li et al., 2018 ). This latter approach re-scales

ach individual probability multiplicand (term) in (3) to guaran-

ee that the product is greater than or equal to 1e - 7 . Similar to

he naive approach, the product is then optimized directly using

E loss. For the PLCO dataset, based on a maximum depth of four
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or the taxonomy, we implement this approach by re-scaling each

ultiplicand in (3) to [0.02,1]. 

Evaluation metrics We evaluate our approach using AUC and av-

rage precision (AP), calculated across both leaf and non-leaf la-

els, when applicable. Additionally, we also evaluate using con-

itional AUC and AP metrics, which are metrics that reflect the

omplicated evaluation space of multi-label classification. In short,

ecause more than one label can be positive, multi-label classifi-

ation performance has exponentially more facets for evaluation

han single-label or even multi-class settings. Conditional metrics

re one such facet, that focus on model performance conditioned

n certain non-leaf labels being positive. Here, we restrict our fo-

us to CXRs exhibiting one or more disease patterns, i.e., abnormal-

ty being positive. As such, this sheds light on model performance

hen it may be critical to discriminate what combination of dis-

ase patterns are present, which is crucial for proper CXR interpre-

ation ( Folio, 2012 ). 

.2. Incomplete labels 

Experimental setup We also use the PLCO dataset

 Gohagan et al., 20 0 0 ) to characterize the benefits of our HMLC

pproach when faced with incomplete labels. However, after

ublication of our original work ( Chen et al., 2019 ), the PLCO

rganizers altered their data release policies and only released

 subset of the original dataset, containing 88,737 labeled CXRs

rom 24,997 patients. 2 For this reason, we perform our incomplete

abels experiments on this smaller dataset, splitting and preparing

he data in an identical manner as described in Section 3.1 . 

To simulate a scenario where learning algorithms may be faced

ith incomplete labels, we removed known labels from the train-

ng set using the following controlled scheme: 

1. We choose a base deletion probability, β ∈ [0, 1]. 

2. For data instances with positive labels for “Pleural Abnormal-

ity”, “Opacity”, and “Pulmonary Nodules and Masses”, we delete

all their children labels with a probability of β . For example, if

we delete the children labels of a positive “Pleural Abnormal-

ity” instance, then it is no longer known whether the “Pleural

Abnormality” label corresponds to “Pleural Fibrosis”, or “Fluid

in Pleural Space”, or both. 

3. We perform the same steps for data instances with positive

labels for “Pulmonary Abnormality” and “Abnormality”, except 

with probabilities of 0.3 β and 0.3 2 β , respectively. For exam-

ple, if the children of a positive instance of “Abnormality” were

deleted, then it is only known there are one or more disease

patterns present, but not which one(s). 

4. A higher-level deletion overrides any decision(s) at finer levels. 

5. Because of their extremely low prevalence, we ignore the “Ma-

jor Atelectasis” and “Distortion in Pulmonary Architecture” la-

bels in training and evaluation. 

Note that this scheme makes it more likely to have a missing

ne-grained label over a higher-level label, which we posit fol-

ows most scenarios producing incomplete labels. When labels are

eleted, we treat them as unknown and do not execute any train-

ng loss on them. We test our HMLC algorithm and baselines on

he following β values: {0, .1, .2, .3, .4, .5, .6, .7}, which ranges from

o incompleteness to roughly 70% of the fine-grained labels being

eleted. To allow for stable comparisons across β values, we also

nsure that if a label was deleted at a certain value of β , it will

lso be deleted at all higher values of β . To ease reproducibility,
2 The first author no longer had access to the original dataset for the incomplete 

abel experiments as he had finished his internship at NVIDIA. 

p  

q

e publicly release our data splits. 3 All other implementation de-

ails are also identical to that of Section 3.1 . 

Evaluation metrics and comparisons We measure AUC values and

ompare our chosen model of HLUP finetune against BR-leaf and

R-all. 

. Results and discussion 

We focus in turn on experiments with complete and incomplete

abels, which can be found in Sections 4.1 and 4.2 , respectively. 

.1. Complete labels 

Our complete labels experiments first focus on the benefits of

ur HLUP-finetune approach compared to alternative “flat” and

MLC strategies. Then, we discuss results specifically focusing on

ur numerically stable HLUP CE loss. 

.1.1. HLUP-finetune performance 

Table 1 outlines the PLCO results of our HLUP-finetune ap-

roach vs. competitors. As the table demonstrates, the standard

aseline BR-leaf model produces high AUC scores, in line with prior

ork ( Gündel et al., 2019b ); however, it does not provide high-

evel predictions based on a taxonomy. Naively executing BR train-

ng on the entire taxonomy, i.e., the BR-all model, does not improve

erformance. This indicates that if not properly incorporated, the

abel taxonomy does not benefit performance. 

In contrast, the HLCP model is indeed able to match BR-leaf’s

erformance on the fine-grained labels, despite also being able

o provide high-level predictions. HLUP-finetune goes further by

xceeding BR-leaf’s fine-grained performance, demonstrating that 

ur two-stage training process can produce tangible improvements.

his is underscored when comparing HLUP-finetune with HLUP,

hich highlights that without the two-stage training, HLUP train-

ng cannot reach the same performance. If we limit ourselves to

odels incorporating the entire taxonomy, our final HLUP-finetune

odel outperforms BR-all by 2% and 2.9% in leaf-label mean AUC

nd AP values, respectively. Because HLUP-finetune shares the

ame labels as BR-all, the performance boosts of the former over

he latter demonstrate that the additional output nodes seen in

MLC are not responsible for performance increases. Instead, it is

ndeed the explicit incorporation of taxonomic structure that leads

o improved performance. 

Fig. 5 provides more details on these improvements, demon-

trating that AUC values are higher for HLUP-finetune compared to

he baseline method for all fine-grained and high-level disease pat-

erns. Although not graphed here for clarity reasons, HLUP-finetune

lso outperformed the HLCP method for all disease patterns. Inter-

sted readers can find these AUC values in our supplementary ma-

erials. Of note is that statistically significant differences also re-

pect the disease hierarchy, and if a child disease pattern demon-

trates statistically significant improvement, so does its parent. 

Of particular note, when considering AUCs conditioned on one

r more abnormalities being present (last column of Table 1 ), the

ap between all HMLC approaches and “flat” classifiers increases

ven more. As can be seen in such settings, HLUP-finetune still ex-

ibits increased performance over the baseline models and also the

ext-best hierarchical model. Importantly, if we compare the con-

itional AUCs between BR-all and HLUP-finetune, we see a 2.4%

ncrease. This indicates that HMLC is particularly effective at dif-

erentiating the exact combination of abnormalities present within

n image. This may reduce the amount of spurious and distracting

redictions upon deployment, but more investigation is required to

uantify this. 
3 https://github.com/hchen135/Hierarchical- Multi- Label- Classification- X- Rays . 

https://github.com/hchen135/Hierarchical-Multi-Label-Classification-X-Rays


8 H. Chen, S. Miao and D. Xu et al. / Medical Image Analysis 66 (2020) 101811 

Table 1 

PLCO AUC and AP values across tested models. Mean values across leaf and non-leaf disease patterns are 

shown, as well as for leaf labels conditioned on one or more abnormalities being present. Boldface marks 

the highest performance. 

Leaf labels Non-leaf labels Leaf labels conditioned on abnormality 

AUC AP AUC AP AUC AP 

Gündel et al. (2019b) 0.865 N/A N/A N/A N/A N/A 

Gündel et al. (2019a) 0.883 N/A N/A N/A N/A N/A 

BR-leaf 0.871 0.234 N/A N/A 0.806 0.334 

BR-all 0.867 0.221 0.852 0.440 0.808 0.323 

HLUP 0.872 0.214 0.856 0.436 0.799 0.288 

HLCP 0.879 0.229 0.857 0.440 0.822 0.329 

HLUP-finetune 0.887 0.250 0.866 0.460 0.832 0.342 

Table 2 

PadChest AUC and AP values across tested models. Mean values across leaf and non-leaf disease pat- 

terns are shown, as well as for leaf labels conditioned on one or more abnormalities being present. 

Boldface marks the highest performance. 

Leaf labels Non-leaf labels Leaf labels conditioned on abnormality 

AUC AP AUC AP AUC AP 

BR-leaf 0.825 0.104 N/A N/A 0.743 0.212 

BR-all 0.825 0.110 0.820 0.221 0.739 0.204 

HLUP 0.831 0.114 0.828 0.220 0.752 0.211 

HLCP 0.831 0.135 0.833 0.240 0.765 0.244 

HLUP-finetune 0.837 0.145 0.840 0.253 0.778 0.261 

Fig. 5. Comparison of AUC scores for all fine-grained and high-level (non-leaf) disease patterns for the BR-all and HLUP-finetune models. The dashed line separates the 

fine-grained from the high-level (non-leaf) disease patterns. Boldface labels and larger graph markers denote disease patterns exhibiting statistically significant improvement 

( p < 0.05) using the StAR software implementation ( Vergara et al., 2008 ) of the non-parametric test of ( DeLong et al., 1988 ). 
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We also note that HLUP-finetune managed to outperform

Gündel et al. (2019a) ’s AUC numbers, despite the latter incorpo-

rating almost twice the amount of data and also including ad-

ditional localization and segmentation tasks. However, we again

note that Gündel et al. (2019a) used a different data split and only

12 fine-grained labels, so such comparisons can only be taken so

far. 

Experiments on PadChest further support these results, with

trends mirroring that of the PLCO experiments. As can be seen

in Table 2 , HLUP-finetune outperforms both the BR baselines and

HMLC alternatives. Moreover, just like the PLCO experiments, when

evaluating AUC and AP conditioned on one or more abnormalities

being present, the performance gaps between HLUP-finetune and

alternatives further increase. The relative performance improve-

ments demonstrate that our HMLC approach generalizes well to a
ifferent CXR dataset outside of PLCO, even though PadChest uses

 different taxonomy and was collected with very different patient

opulations at a much later date. 

The PLCO and PadChest performance boosts are in line with

rior work that reported improved classification performance

hen exploiting taxonomy, e.g., for text classification ( McCallum

t al., 1998; Dumais and Chen, 20 0 0 ), but here we use HMLC in a

ore modern deep-learning setting and for an imaging-based CAD

pplication. In particular, given that taxonomy and ontology are

rucial within medicine, the use of hierarchy is natural. Because

he algorithmic approach we take remains very simple, our HMLC

pproach may be an effective method for many other medical clas-

ification tasks outside of CXRs. 

The discussion of the performance boosts garnered by HMLC

re very important, but it should also be noted that HMLC pro-
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Table 3 

Comparison of AUCs produced using different HLUP CE loss implementations for PLCO. 

HLUP (naive) HLUP (rescale) HLUP (ours) HLUP-finetune (naive) HLUP-finetune (rescale) HLUP-finetune (ours) 

0.864 0.853 0.872 0.886 0.867 0.887 

Fig. 6. Mean AUC scores under different levels of label incompleteness with con- 

fidence intervals representing the 2.5th and 97.5th percentiles of 50 0 0 resampling 

with replacement bootstrap rounds ( Dekking et al., 2005 ). 
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ides inherent benefits outside of raw classification performance.

y ensuring that clinical taxonomy is respected, i.e., a parent label’s

seudo-probability will always be greater than or equal to any of

ts children’s, HMLC provides a more interpretable and understand-

ble set of predictions that better match the top-down structure of

edical ontology. 

In addition to exploring the benefits of the conceptual approach

f HMLC to CXR classification, our work also demonstrates that

 two-stage HLUP finetuning approach can provide performance

oosts over the more common one-stage HLCP training seen in

any prior deep-learning works ( Redmon and Farhadi, 2017; Roy

t al., 2020; Yan et al., 2015 ). As such, our two-stage approach may

lso prove useful to hierarchical classifiers seen in other domains,

uch as computer vision or text classification. 

.1.2. Numerically stable HLUP 

Table 3 demonstrates that our numerically stable HLUP CE loss

esults in much better AUCs compared to the competitor rescal-

ng approach ( Li et al., 2018 ) and to naive HLUP training when

tarting from ImageNet weights. However, there were no perfor-

ance improvements when compared to the naive approach when

netuning from the HLCP weights. We hypothesize that the pre-

ictions for the HLCP are already at a sufficient quality that the

umerical instabilities of the naive HLUP CE loss are not severe

nough to impair performance. Nonetheless, given the improve-

ents when training from ImageNet weights, these results indi-

ate that our HLCP CE loss does indeed provide tangible improve-

ents in convergence stability. We expect these improvements to

e greater given taxonomies of greater depth, and our formulation

hould also prove valuable to multi-instance setups which must

ptimize CE loss over the product of large numbers of probabili-

ies, e.g., the 256 multiplicands seen in Li et al. (2018) . 

.2. Incomplete labels 

Fig. 6 shows the results of our incompletely labelled experi-

ents. As can be seen when all labels are present, i.e., β = 0 , the
esults mirror that of Section 4.1 , with HLUP-finetune outperform-

ng the baseline models and the BR-all providing no improvements

ver BR-leaf. As the incompleteness severity increases, BR-leaf’s

erformance drastically drops, while BR-all and HLUP-finetune are

uch better able to manage label incompleteness. At the highest β
evel, the performance gap between HLUP-finetune and BR-leaf al-

ost reaches 7%. Per-abnormality AUC values can be found in our

upplementary materials. 

Our results demonstrate that incorporating hierarchy can be an

ffective means to manage incomplete labels. Specifically, while

LUP-finetune’s performance does indeed drop as the incomplete-

ess severity increases, it does so at a drastically reduced rate

ompared to the standard BR-leaf classifier. Interestingly, BR-all,

hich trains all outputs but without incorporating a taxonomy,

lso manages to retain an equally graceful performance drop. How-

ver, HLUP-finetune’s roughly 2% AUC performance advantage over

R-all indicates that properly incorporating the taxonomic hierar-

hy is necessary to boost classification performance. We suspect

he anomaly at β = 0 . 6 is due to variability caused by the random-

ess of the training procedure and we reran our experiments at

his β value which confirmed this. Ideally, running multiple train-

ng runs at each β value would allow us to produce confidence

ars that take into account effects from random weight initializa-

ion and sampling, but time and computational resources did not

llow us to perform this extremely demanding set of experiments.

inally, HLUP-finetune has the added important benefit of produc-

ng predictions that respect the taxonomy, which is something that

R-all does not do. Thus, these results indicate that when possible,

ncorporating a HMLC approach can be an effective means to man-

ge incompletely labelled data. As the prevalence of text-mined

ACS medical imaging data increases, we expect the need for ap-

roaches to gracefully handle missing labels to increase, and our

MLC approach may provide a useful cornerstore of future work

n this direction. 

. Conclusions 

We have presented a two-stage approach for deep HMLC of

XRs that combines conditional training with an unconditional

robability fine-tuning step. To effect the latter, we introduce a

ew and numerically stable formulation for HLUP CE loss, which

e expect would also prove valuable in other training scenarios

nvolving the multiplication of probability predictions, e.g., multi-

nstance learning. Through comprehensive evaluations, we report

he highest mean AUC on the PLCO dataset yet, outperforming

ierarchical and non-hierarchical alternatives. Supporting experi- 

ents on the PadChest dataset confirm these results. We also show

erformance improvements conditioned on one or more abnormal-

ties being present, i.e., predicting the specific combination of dis-

ase patterns, which is crucial for CXR interpretation. Experiments

ith incompletely labelled data also demonstrate that our two-

tage HMLC approach is an effective means to handle missing la-

els within training data. 

There are several interesting avenues of future work. For in-

tance, while the straightforward HMLC approach we take enjoys

he virtue of being easy to implement and tune, it is possible that

ore sophisticated approaches, e.g., using hierarchical features

r dedicated classifiers, may garner even further improvements.

rior work using classic, non deep-learning approaches, explored
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these options ( McCallum et al., 1998; Cesa-bianchi et al., 2005;

Dumais and Chen, 20 0 0; Cai, 20 07; Vens et al., 2008 ), and their

insights should be applied today. Another important topic of

future work should be on incorporating uncertainty within HMLC.

This would allow a model, when appropriate, to predict high

confidence for non-leaf label predictions but lower confidence

for leaf label predictions, enhancing its usefulness in deployment

scenarios. Future work should also consider applications outside of

CXRs both within and without medical imaging, e.g., genomics or

proteomics. Finally, one issue for further investigation is to better

understand the implications of the annotation noise described by

Gündel et al. (2019a) , both for training and for evaluation. Relevant

to this work, assessing label noise at higher levels of hierarchy

should be an important focus going forward. 
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